
OpenLMI Documentation
Release latest

OpenLMI authors

October 08, 2014

Contents

1 Client components 3
1.1 LMI metacommand . 3
1.2 LMIShell . 3

2 Server components 5

3 Table of Contents 7
3.1 OpenLMI client components . 7
3.2 OpenLMI server components . 194

Python Module Index 299

i

ii

OpenLMI Documentation, Release latest

OpenLMI = Open Linux Management Infrastructure.

OpenLMI is open-source project aiming to improve management of Linux systems using WBEM standards. We
reuse many already available open-source WBEM components, adding the missing ones and integrating them into one
system management solution.

In short, WBEM can be described as a remote API for system management. See WBEM overview for details.

Contents 1

http://www.openlmi.org/node/1785

OpenLMI Documentation, Release latest

2 Contents

CHAPTER 1

Client components

There are many already existing tools and libraries to manage WBEM-enabled hosts. see WBEM overview for details.

OpenLMI project adds LMI metacommand and LMIShell.

1.1 LMI metacommand

A command line utility to perform discovery and operations on remote managed systems. For example, it can start a
printing service on remote system:

/usr/bin/lmi -h my.server.org service start cups

LMI metacommand users do not need to know anything about WBEM, all the complexity is hidden inside.

1.2 LMIShell

A high-level python-based WBEM client, that can be used for scripting or as an interactive shell to manage remote
systems. For example, one can write a script to start a service:

c = connect("my.server.org", "root", "opensesame")
cups = c.root.cimv2.LMI_Service.first_instance({"Name" : "cups.service"})
cups.StartService()

LMIShell users do not need to know anything about WBEM transport protocols, however some knowledge about the
aforementioned remote API becomes necessary. In the example above, the script author must know that system ser-
vices are exposed as instances of LMI_Service class with property Name (the service name) and method StartService()
that starts the service.

3

http://www.openlmi.org/node/1785

OpenLMI Documentation, Release latest

4 Chapter 1. Client components

CHAPTER 2

Server components

OpenLMI focuses on implementation of missing providers for networking, storage, system services, packages and so
on.

5

OpenLMI Documentation, Release latest

6 Chapter 2. Server components

CHAPTER 3

Table of Contents

3.1 OpenLMI client components

They consist of several client-side python utilities and libraries. We refer to them as OpenLMI Tools and ship them
under obvious name openlmi-tools.

Currently they contain LMI metacommand and LMIShell.

3.1.1 LMI metacommand

Is a command line interface for OpenLMI Providers sitting on top of LMIShell. It provides an easy to use interface for
system management through modular commands. These dynamically extend the functionality of LMI metacommand.

Short example:

$ lmi -h myhost.example.org storage fs create --label=opt-root ext4 /dev/vda5

Usage

LMI metacommand is a command line utility build on top of client-side libraries. It can not do much on its own. Its
functionality is extended by commands that are installed separately. Each command operates on a set of providers that
need to be installed on managed machine. Commands can be invoked directly from shell or within interactive mode.

Running from command line

It can run single command given on command line like this:

lmi -h ${hostname} service list --all

Getting help

For detailed help run:

lmi --help

To get a list of available commands with short descriptions:

7

OpenLMI Documentation, Release latest

lmi help

For help on a particular registered command:

lmi help service

Interactive mode

Or it can be run in interactive mode when command is omitted:

$ lmi -h ${hostname}
lmi> help
...
lmi> sw search django
...
lmi> sw install python-django
...
lmi> exit

help command is always your good friend. Following two lines gets you the same help message:

lmi> help storage raid
...
lmi> storage raid --help
...

Built-in commands Interactive mode comes with few special commands not available from command line. To get
their list, type:

lmi> : help

They are prefixed with : and optional space. Currently only namespace nesting commands are supported. Those are
:cd, :.. and :pwd.

They work as expected:

lmi> :pwd # top-level namespace
/lmi
lmi> :cd storage # you can do storage specific stuff here
>storage> :pwd
/lmi/storage
>storage> :cd raid # we don’t care about anything but raid
>>raid> :pwd
/lmi/storage/raid
>>raid> :cd /lmi/sw # let’s manage packages now
>sw> :..
lmi>

Static commands Aren’t prepended with : and except for help are again available only in interactive mode.

EOF Same as hitting ^D. If some nested into some command’s namespace, it will map to :cd ..
and parent namespace will become active. If the top-level namespace is active, program will
exit.

exit Exits immediately. It accepts optional exit code as an argument.
help Lists available commands. Accepts command path as an optional argument.

8 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Extending metacommand

In order to make the LMI metacommand useful, you’ll need to install some commands. If you run Fedora, the easiest
way to get them is with your favorite package manager:

sudo dnf install ’openlmi-scripts-*’

Note: On RHEL you’ll need to add EPEL to your repositories before installing them with yum.

They will be automatically discovered by LMI metacommand. You can ensure their presence with this simple test:

$ lmi help
Commands:

file - File and directory management functions.
group - POSIX group information and management.
help - Print the list of supported commands with short description.
hwinfo - Display hardware information.
journald - Test for provider version requirements
locale - System locale management.
net - Networking service management.
power - System power state management.
service - System service management.
sssd - SSSD system service management.
storage - Basic storage device information.
sw - System software management.
system - Display general system information.
user - POSIX user information and management.

For more informations about particular command type:
help <command>

As Python eggs They may be installed on any distribution. Go for them also if you want to be more up to date. They
are available for download from PyPI. The easiest way to install them is with pip (shipped with python-pip package):

pip search openlmi-scripts
pip install --user openlmi-scripts-{hardware,system,service,storage}

Bleeding edge Commands are available from our git repository. Follow instructions there to install the most up to
date versions.

Documentation Check out documentation of currently implemented commands.

• Account command line reference

• Hardware command line reference

• Journald command line reference

• Locale command line reference

• Logical File command line reference

• Networking command line reference

• Power Management command line reference

• Realmd command line reference

3.1. OpenLMI client components 9

https://fedoraproject.org/wiki/EPEL
https://pypi.python.org/pypi?%3Aaction=search&term=openlmi-scripts*&submit=search
https://github.com/openlmi/openlmi-scripts

OpenLMI Documentation, Release latest

• Service command line reference

• Software command line reference

• SSSD command line reference

• Storage command line reference

• System command line reference

Configuration

LMI metacommand has the main configuration file located in:

/etc/openlmi/scripts/lmi.conf

User can have his own configuration file taking precedence over anything in global one above:

$HOME/.lmirc

Configuration is written in INI-like configuration files. Please refer to ConfigParser‘s documentation for details.

Follows a list of sections with their list of options. Most of the options listed here can be overridden with command
line parameters.

See also:

configuration

Section [Main]

CommandNamespace [string] Python namespace, where command entry points will be searched for.

Defaults to lmi.scripts.cmd.

Trace [boolean] Whether the exceptions should be logged with tracebacks.

Defaults to False.

Can be overridden with --trace and --notrace options on command-line.

Note: For most exceptions generated by scripts a Verbosity option needs to be highest as well for tracebacks to
be printed.

Verbosity: integer A number within range -1 to 2 saying, how verbose the output shall be. This differs from
log_level, which controls the logging messages written to file. If logging to console is enabled it sets the
minimum severity level. -1 Suppresses all messages except for errors. 0 shows warnings, 1 info messages
and 2 enables debug messages. This option also affects the verbosity of commands, making them print more
information to stdout.

Defaults to 0.

Can be overridden with -v and -q flags on command-line.

Section [CIM]

Namespace [string] Allows to override default CIM namespace, which will be passed to script library functions.

Defaults to root/cimv2.

10 Chapter 3. Table of Contents

http://docs.python.org/2/library/configparser.html

OpenLMI Documentation, Release latest

Section [SSL]

VerifyServerCertificate [boolean] Whether to verify server-side certificate, when making secured connection over
https.

Defaults to True.

Can be overridden with -n | --noverify flag on command-line.

Section [Format]

HumanFriendly [boolean] Whether to print values in human readable forms (e.g. with units).

Defaults to False.

Can be overridden with -H | --human-frienly flag on command-line.

ListerFormat [one of {csv, table}] What format to use, when listing tabular data. csv format allows for easy
machine parsing, the second one is more human friendly.

Defaults to table.

Can be overridden with -L | --lister-format option on command line.

NoHeadings [boolean] Whether to suppress headings (column names) when printing tables.

Defaults to False.

Can be overridden with -N | --no-headings option on command line.

Section [Log]

Level [one of {DEBUG, INFO, WARNING, ERROR, CRITICAL}] Minimal severity level of messages to log. Affects
only logging to a file. See the main_verbosity option controlling console logging level.

Defaults to ERROR.

LogToConsole [boolean] Whether the logging to console is enabled.

Defaults to True

On command-line the same could be achieved by redirecting stderr to /dev/null.

ConsoleFormat [string] Format string used when logging to a console. This applies to warnings and more severe
messages. Refer to Format String in python’s documentation for details.

Defaults to %(levelname)s: %(message)s.

ConsoleInfoFormat [string] Format string used when logging to a console. Applies to info and debug messages.
Refer to Format String in python’s documentation for details.

Defaults to %(message)s.

FileFormat [string] Format string used, when logging to a console. This applies only when OutputFile is set (see
below). Refer to Format String in python’s documentation for details.

Defaults to %(asctime)s:%(levelname)-8s:%(name)s:%(lineno)d - %(message)s

OutputFile [string] Allows to set a path to file, where messages will be logged. No log file is written at default.

Defaults to empty string.

Can be overridden on command line with --log-file option.

3.1. OpenLMI client components 11

OpenLMI Documentation, Release latest

Account command line reference

These commands allow to query and manage users and groups.

user

POSIX user information and management.

Usage:

lmi user list

lmi user show [<user> ...]

lmi user create <name> [options]

lmi user delete [–no-delete-home] [–no-delete-group] [–force] <user> ...

Commands:

list Prints a list of users.

show Show detailed information about user. If no users are provided, all of them are displayed.

create Creates a new user. See Create options below for options description.

delete Delete specified user (or user list). See Delete options below for options description.

Create options:

-c gecos, –gecos=gecos Set the GECOS field to gecos.

-d dir, –directory=dir Set the user’s home directory to dir. If this option is not set, a default value is
used.

-s shell, –shell=shell Set user’s login shell to shell. If this option is not set, a default value is used.

-u uid, –uid=uid Use user ID uid for the newly created user. If this option is not set, a default value is
used.

-g gid, –gid=gid Set user’s primary group ID to gid. If this option is not set, a default value is used.

-r, –reserved The user is a system user. Implies the -M option.

-M, –no-user-home Don’t create a home directory.

-n, –no-user-group Don’t create a primary group for user.

-p, –password=pwd Set user’s password to ‘pwd’.

-P, –plain-password If set, the password set in ‘-p’ parameter is plain text. Otherwise, it is already
encrypted by supported hash algorithm. See crypt(3).

Delete options:

–no-delete-home Do not remove home directory.

–no-delete-group Do not remove users primary group.

–force Remove home directory even if the user is not owner.

12 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

group

POSIX group information and management.

Usage:

lmi group list [<group> ...]

lmi group create [–reserved] [–gid=gid] <group>

lmi group delete <group>

lmi group listuser [<group>] ...

lmi group adduser <group> <user> ...

lmi group removeuser <group> <user> ...

Commands:

list List groups. If no groups are given, all are listed.

create Creates a new group.

delete Deletes a group.

listuser List a users in a group or in a list of groups.

adduser Adds a user or a list of users to the group.

removeuser Removes a user or a list of users from the group.

Options:

-r, –reserved Create a system group.

-g, –gid=gid GID for a new group.

Hardware command line reference

This command can display various hardware information.

hwinfo

Display hardware information.

Usage:

lmi hwinfo [all]

lmi hwinfo system

lmi hwinfo motherboard

lmi hwinfo cpu

lmi hwinfo memory

lmi hwinfo disks

Commands:

all Display all available information.

system Display system information.

3.1. OpenLMI client components 13

OpenLMI Documentation, Release latest

motherboard Display motherboard information.

cpu Display processor information.

memory Display memory information.

disks Display disks information.

Journald command line reference

This command allows to query and watch system logs through journald service. It can also log custom messages.

journald

Journald message log management.

Usage:

lmi journald list [(–reverse | –tail)]

lmi journald logger <message>

lmi journald watch

Commands:

list Lists messages logged in the journal

logger Logs a new message in the journal

watch Watch for newly logged messages

Options:

–reverse List messages from newest to oldest

–tail List only the last 50 messages

Locale command line reference

This command allows to display and set system locale.

locale

System locale management.

Usage:

lmi locale show [(–locale | –vc-keyboard | –x11-keymap)]

lmi locale set-locale (<locale> <value>) ...

lmi locale set-vc-keyboard [–convert] <keymap> [<keymap-toggle>]

lmi locale set-x11-keymap [–convert] <layouts> [<model> <variant> <options>]

Commands:

show Show detailed information about system locale cathegory (locale variables, key mapping on the
virtual console, default key mapping of the X11 server). If no cathegory is provided via option, all
locale information is displayed.

14 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

set-locale Set locale variables.

set-vc-keyboard Set the key mapping on the virtual console.

set-x11-keymap Set the default key mapping of the X11 server.

Show options:

–locale Display locale variables.

–vc-keyboard Display key mapping on the virtual console.

–x11-keymap Display default key mapping of the X11 server.

Set options:

–convert Try to set the nearest console keyboard/X11 keyboard setting for the chosen X11 key-
board/console keyboard setting.

Logical File command line reference

This command allows to query file system structure. It can also create and delete empty directories – mount points.

file

File and directory management functions.

Usage:

lmi file list <directory> [<depth>]

lmi file createdir <directory>

lmi file deletedir <directory>

lmi file show <target>

Commands:

list List a directory. When depth is specified, at most depth levels will be listed recursively.

The files and directories are listed in a tree-like structure.

Possible listed file types are:

• F : Regular data file.

• Dev : Device file. Can be either block or character device.

• Dir : Directory.

• P : Pipe file.

• L : Symbolic link.

• S : Unix socket.

createdir Create a directory. The parent directory must exist.

deletedir Delete a directory. The directory must be empty.

show Show detailed information about target. Target can be any file on the remote system.

3.1. OpenLMI client components 15

OpenLMI Documentation, Release latest

Networking command line reference

This command allows to manage networking devices and their configuration.

net

Networking service management.

Usage:

lmi net device (–help | show [<device_name> ...] | list [<device_name> ...])

lmi net setting (–help | <operation> [<args>...])

lmi net activate <caption> [<device_name>]

lmi net deactivate <caption> [<device_name>]

lmi net enslave <master_caption> <device_name>

lmi net address (–help | <operation> [<args>...])

lmi net route (–help | <operation> [<args>...])

lmi net dns (–help | <operation> [<args>...])

Commands:

device Display information about network devices.

setting Manage the network settings.

activate Activate setting on given network device.

deactivate Deactivate the setting.

enslave Create new slave setting.

address Manipulate the list of IP addresses on given setting.

route Manipulate the list of static routes on given setting.

dns Manipulate the list of DNS servers on given setting.

Power Management command line reference

This command allows to display and control system power states.

power

System power state management.

Usage:

lmi power list

lmi power suspend

lmi power hibernate

lmi power reboot [–force]

lmi power poweroff [–force]

16 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Commands:

list Prints a list of available power states.

suspend Suspend the system (suspend to RAM).

hibernate Hibernate the system (suspend to disk).

reboot Shutdown and reboot the system (–force will skip shutdown of running services).

poweroff Shutdown the system (–force will skip shutdown of running services).

Options:

–force Skip shutting down services first

Realmd command line reference

This command allows to join or leave AD or Kerberos domain.

realmd

Manage AD or Kerberos domain membership.

Usage:

lmi realmd [show]

lmi realmd join -u <user> [-p <password>] -d <domain>

lmi realmd leave -u <user> [-p <password>] -d <domain>

Commands:

show Show joined domain.

join Join the given domain.

leave Leave the given domain.

Options:

-u, –user The username to be used when authenticating to the domain.

-p, –password Optional password for the authentication. If omitted you will be prompted for one.

-d, –domain The domain to be joined/left.

Service command line reference

This command allows to list and manage system services.

service

System service management.

Usage:

3.1. OpenLMI client components 17

OpenLMI Documentation, Release latest

lmi service list [(–enabled | –disabled)]

lmi service show <service>

lmi service start <service>

lmi service stop <service>

lmi service enable <service>

lmi service disable <service>

lmi service restart [–try] <service>

lmi service reload <service>

lmi service reload-or-restart [–try] <service>

Commands:

list Prints a list of services. Only enabled services are printed at default.

show Show detailed information about service.

start Starts a service.

stop Stops the service.

restart Restarts the service.

reload Ask the service to reload its configuration.

reload-or-restart

Reload the service if it supports it. If not, restart it instead.

Options:

–enabled List only enabled services.

–disabled List only disabled services.

–try Whether to abandon the operation if the service is not running.

Software command line reference

This command allows to list and manage rpm packages and repositories.

sw

System software management.

Usage:

lmi sw search [(–repoid <repository>)] [–allow-duplicates] <package>...

lmi sw list (–help | <what> [<args>...])

lmi sw show (–help | <what> [<args>...])

lmi sw install [–force] [–repoid <repository>] <package> ...

lmi sw install –uri <uri>

lmi sw update [–force] [–repoid <repository>] <package> ...

lmi sw remove <package> ...

18 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

lmi sw verify <package> ...

lmi sw enable <repository> ...

lmi sw disable <repository> ...

Commands:

list List various information about packages, repositories or files.

show Show detailed informations about package or repository.

install Install packages on system. See below, how package can be specified. Installation from URI is
also supported, it must be prefixed with –uri option.

update Update package.

remove Remove installed package.

verify Verify package. Files that did not pass the verification are listed prefixed with a sequence of
characters, each representing particular attribute, that failed. Those are:

• S file Size differs

• M Mode differs (includes permissions and file type)

• 5 digest (formerly MD5 sum) differs

• D Device major/minor number mismatch

• L readLink(2) path mismatch

• U User ownership differs

• G Group ownership differs

• T mTime differs

• P caPabilities differ

enable Enable one or more repositories.

disable Disable one or more repositories.

Options:

–force Force installation. This allows to install package already installed – make a reinstallation or to
downgrade package to older version.

–repoid <repository>

Select a repository, where the given package will be searched for.

–uri <uri> Operate upon an rpm package available on remote system through http or ftp service.

–installed Limit the query only on installed packages.

–help Get a detailed help for subcommand.

Specifying <package>:

Package can be given in one of following notations:

• <name>

• <name>.<arch>

• <name>-<version>-<release>.<arch> # nvra

• <name>-<epoch>:<version>-<release>.<arch> # nevra

3.1. OpenLMI client components 19

OpenLMI Documentation, Release latest

• <epoch>:<name>-<version>-<release>.<arch> # envra

Bottom most notations allow to precisely identify particular package.

sw list

List packages, repositories or files.

Usage:

lmi sw list [all] [–allow-duplicates]

lmi sw list installed

lmi sw list available [–repoid <repository>] [–allow-duplicates]

lmi sw list repos [–disabled | –all]

lmi sw list files [-t <file_type>] <package>

Commands:

all

• List installed and available packages.

installed

• List installed packages.

available

• List available packages.

repos

• List repositories. Only enabled ones are listed by default.

files

• List files belonging to a package.

Options:

–allow-duplicates Print all possible versions of package found. Normally only the newest version is
shown.

–repoid <repository> List just packages available in given <repository>.

–all List all repositories.

–disabled List only disabled repositories.

-t –type (file | directory | device | symlink | fifo)

List only particular file type.

sw show

Show details of package or repository.

Usage:

lmi sw show pkg [–installed | –repoid <repository>] <package>

lmi sw show repo <repository>

20 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Options:

–installed Do not search available packages. This speeds up the operation when only installed packages
shall be queried.

–repoid <repository> Search just this repository.

SSSD command line reference

This command allows to manage SSSD service.

sssd

SSSD system service management.

Usage:

lmi sssd status

lmi sssd restart [–try]

lmi sssd set-debug-level <level> [–until-restart] [options]

lmi sssd service

lmi sssd domain

Commands:

status Prints SSSD service’s status.

restart Restarts the SSSD service.

set-debug-level Set debug level of selected (all by default) components.

service Manage supported services.

domain Manage SSSD domains.

Restart options:

–try Whether to abandon the operation if the service is not running.

Set-debug-level options:

–until-restart

Set the debug level but switch it to original value when SSSD is restarted.

–all Select all components (default)

–monitor Select the SSSD monitor.

–services=svc,...

Comma separated list of SSSD services.

–domains=dom,...

Comma separated list of SSSD domains.

3.1. OpenLMI client components 21

OpenLMI Documentation, Release latest

Storage command line reference

lmi storage is a command for LMI metacommand, which allows listing and manipulation of storage on a remote
host with installed OpenLMI storage provider.

Available commands:

lmi storage Generic information about storage devices.

lmi storage fs Filesystem and other data format management.

lmi storage luks LUKS management.

lmi storage lv Logical Volume management.

lmi storage mount Mount management.

lmi storage partition Partition management.

lmi storage partition-table Partition table management.

lmi storage raid MD RAID management.

lmi storage vg Volume Group management.

lmi storage thinpool Thin Pool management.

lmi storage thinlv Thin Logical Volume management.

Common options

• <device> can be specified as one of:

– DeviceID of appropriate CIM_StorageExtent. This is internal OpenLMI ID of the device and it should be
stable across system reboots.

– Device name directly in /dev directory, such as /dev/sda. This device name is available as Name property
of CIM_StorageExtent.

– Name of MD RAID or logical volume. This method cannot be used when the name is not unique, for
example when there are two logical volumes with the same name, allocated from different volume groups.
This name is available as ElementName property of CIM_StorageExtent.

• <vg> represents name of a volume group, with or without /dev/ prefix.

• Any <size>, such as size of new partition or new logical volume, can be specified with ‘T’, ‘G’, ‘M’ or ‘K’
suffix, which represents appropriate unit (terabytes, gigabytes etc.) 1K (kilobyte) is 1024 of bytes. The suffix is
case insensitive, i.e. 1g = 1G.

storage

Basic storage device information.

Usage:

lmi storage fs <cmd> [<args> ...]

lmi storage luks <cmd> [<args> ...]

lmi storage lv <cmd> [<args> ...]

lmi storage mount <cmd> [<args> ...]

lmi storage partition <cmd> [<args> ...]

22 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

lmi storage partition-table <cmd> [<args> ...]

lmi storage raid <cmd> [<args> ...]

lmi storage vg <cmd> [<args> ...]

lmi storage thinpool <cmd> [<args> ...]

lmi storage thinlv <cmd> [<args> ...]

lmi storage depends [–deep] [<device> ...]

lmi storage list [<device> ...]

lmi storage provides [–deep] [<device> ...]

lmi storage show [<device> ...]

lmi storage tree [<device>]

Commands:

fs Filesystem and other data format management.

luks LUKS management.

lv Logical Volume management.

mount Mount management.

partition Partition management.

partition-table Partition table management.

raid MD RAID management.

vg Volume Group management.

thinpool Thin Pool management.

thinlv Thin Logical Volume management.

list List short information about given device. If no devices are given, all devices are listed.

show Show detailed information about given devices. If no devices are provided, all of them are dis-
played.

provides Show devices, which are created from given devices (= show children of the devices).

For example, if a disk is provided, all partitions on it are returned. If ‘deep’ is used, all RAIDs,
Volume Groups and Logical Volumes indirectly allocated from it are returned too.

depends Show devices, which are required by given devices to operate correctly (= show parents of the
devices).

For example, if a Logical Volume is provided, its Volume Group is returned. If ‘deep’ is used, also
all Physical Volumes and appropriate disk(s) are returned.

tree Show tree of devices, similar to lsblk.

If no device is provided, all devices are shown, starting with physical disks.

If a device is provided, tree starts with the device and all dependent devices are shown.

Options:

device Identifier of the device. Either one of:

• DeviceID of appropriate CIM_StorageExtent object. This is internal OpenLMI ID of the device
and it should be stable across system reboots.

3.1. OpenLMI client components 23

OpenLMI Documentation, Release latest

• Device name directly in /dev directory, such as ‘/dev/sda’. This device name is available as
Name property of CIM_StorageExtent object.

• Name of MD RAID or logical volume. This method cannot be used when the name is not
unique, for example when there are two logical volumes with the same name, allocated from dif-
ferent volume groups. This name is available as ElementName property of CIM_StorageExtent
object.

–deep Show all ancestors/children the device, not only the immediate ones.

storage fs

Filesystem and other data format management.

Usage:

lmi storage fs list [–all] [<device> ...]

lmi storage fs create [–label=<label>] <fstype> <device> ...

lmi storage fs delete <device> ...

lmi storage fs list-supported

Commands:

list List filesystems and other data formats (RAID metadata, ...) on given devices. If no devices are
provided, all filesystems are listed. If –all option is set, all filesystem, including system ones like
tmpfs, cgroups, procfs, sysfs etc are listed.

create Format device(s) with given filesystem. If more devices are given, the filesystem will span over
these devices (currently supported only by btrfs).

For list of available filesystem types, see output of lmi storage fs list-supported.

delete Delete given filesystem or data format (like partition table, RAID metadata, LUKS, physical vol-
ume metadata etc) on given devices.

list-supported

List supported filesystems, which can be used as lmi storage fs create <fstype> option.

storage luks

LUKS management

Usage:

lmi storage luks list

lmi storage luks create [-p <passphrase>] <device>

lmi storage luks open [-p <passphrase>] <device> <name>

lmi storage luks close <device>

lmi storage luks addpass [-p <passphrase>] [-n <new-passphrase>] <device>

lmi storage luks deletepass [-p <passphrase>] <device>

Commands:

list List available LUKS formats and their clear-text devices (if any).

24 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

create Format given device with LUKS format. Any data on the device will be destroyed.

open Open given device formatted with LUKS and expose its clear-text data as a new block device.

close Close given device formatted with LUKS and destroy its clear-text block device.

addpass Add new passphrase to given LUKS-formatted device. Each device can have up to 8 separate
passwords and any of them can be used to decrypt the device.

deletepass Remove given passphrase from LUKS-formatted device.

Common options:

-p, –passphrase=passphrase Passphrase. It will be read from the terminal, if it is not provided on com-
mand line.

-n, –new-passphrase=passphrase New passphrase. It will be read from the terminal, if it is not provided
on command line.

Open options:

<device> Device with LUKS format on it.

<name> Name of the clear-text block device to create.

Close options:

<device> Device with LUKS format on it, previously opened by ‘lmi storage luks open’.

storage lv

Logical Volume management.

Usage:

lmi storage lv list [<vg> ...]

lmi storage lv create <vg> <name> <size>

lmi storage lv delete <lv> ...

lmi storage lv show [<lv> ...]

Commands:

list List available logical volumes on given volume groups. If no volume groups are provided, all logical
volumes are listed.

create Create a logical volume on given volume group.

delete Delete given logical volume.

show Show detailed information about given Logical Volumes. If no Logical Volumes are provided, all
of them are displayed.

Options:

vg Name of the volume group, with or without /dev/ prefix.

size Size of the new logical volume, by default in bytes. ‘T’, ‘G’, ‘M’ or ‘K’ suffix can be used to specify
other units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB (= 1024 bytes). The suffix is case
insensitive, i.e. 1g = 1G = 1073741824 bytes.

‘E’ suffix can be used to specify number of volume group extents, ‘100e’ means 100 extents.

3.1. OpenLMI client components 25

OpenLMI Documentation, Release latest

storage mount

Mount management.

Usage:

lmi storage mount list [–all] [<target> ...]

lmi storage mount create <device> <mountpoint> [(-t <fs_type>) (-o <options>)]

lmi storage mount delete <target>

lmi storage mount show [–all] [<target> ...]

Commands:

list List mounted filesystems with a device attached to them. <target> can be specified either as device
names or mountpoints.

create Mount a specified device on the path given by mountpoint. Optionally, filesystem type, common
options (filesystem independent) and filesystem specific options can be provided. If no filesystem
type is specified, it is automatically detected.

Options can be provided as a comma-separated string of ‘option_name:value’ items. Possible option
names are:

AllowExecution AllowMandatoryLock AllowSUID AllowUserMount AllowWrite Auto Dump
FileSystemCheckOrder InterpretDevices Silent SynchronousDirectoryUpdates SynchronousIO
UpdateAccessTimes UpdateDirectoryAccessTimes UpdateFullAccessTimes UpdateRelativeAc-
cessTimes

Possible option values for all of the options except for FileSystemCheckOrder are ‘t’, ‘true’, ‘f’,
‘false’. All of them are case insensitive. The FileSystemCheckOrder option’s value is a number.

In case an option is not recognized as being one of the possible options listed above, it’s used as a
filesystem dependent option.

Examples:

create /dev/vda1 /mnt -t ext4 -o ‘AllowWrite:F,InterpretDevices:false’

create /dev/vda2 /mnt -o ‘FileSystemCheckOrder:2’

create /dev/vda3 /mnt -o ‘user_xattr,barrier=0’

create /dev/vda4 /mnt -o ‘Dump:t, AllowMandatoryLock:t, acl’

delete Unmount a mounted filesystem. Can be specified either as a device path or a mountpoint.

show Show detailed information about mounted filesystems with a device attached to them. <target>
can be specified either as device names or mountpoints. <spec>. Optionally, show all mounted
filesystems.

storage partition

Partition management.

Usage:

lmi storage partition list [<device> ...]

lmi storage partition create [–logical | –extended] <device> [<size>]

lmi storage partition delete <partition> ...

26 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

lmi storage partition show [<partition> ...]

Commands:

list List available partitions on given devices. If no devices are provided, all partitions are listed.

create Create a partition on given device.

If no size is given, the resulting partition will occupy the largest available space on disk.

The command automatically creates extended and logical partitions using these rules:

• If no partition type (logical or extended) is provided and MS-DOS partition is requested and
there is extended partition already on the device, a logical partition is created.

• If there is no extended partition on the device and there are at most two primary partitions on
the device, primary partition is created.

• If there is no extended partition and three primary partitions already exist, new extended parti-
tion with all remaining space is created and a logical partition with requested size is created.

delete Delete given partitions.

show Show detailed information about given partitions. If no partitions are provided, all of them are
displayed.

Options:

size Size of the new partition volume, by default in sectors. ‘T’, ‘G’, ‘M’ or ‘K’ suffix can be used to
specify other units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB (= 1024 bytes). The suffix is
case insensitive, i.e. 1g = 1G = 1073741824 bytes.

device,

partition Identifier of the device/partition. Either one of:

• DeviceID of appropriate CIM_StorageExtent object. This is internal OpenLMI ID of the device
and it should be stable across system reboots.

• Device name directly in /dev directory, such as ‘/dev/sda’. This device name is available as
Name property of CIM_StorageExtent object.

• Name of MD RAID or logical volume. This method cannot be used when the name is not
unique, for example when there are two logical volumes with the same name, allocated from dif-
ferent volume groups. This name is available as ElementName property of CIM_StorageExtent
object.

–logical Override the automatic behavior and request logical partition.

–extended Override the automatic behavior and request extended partition.

storage partition-table

Partition table management.

Usage:

lmi storage partition-table list [<device> ...]

lmi storage partition-table create [–gpt | –msdos] <device> ...

lmi storage partition-table show [<device> ...]

Commands:

3.1. OpenLMI client components 27

OpenLMI Documentation, Release latest

list List partition tables on given device. If no devices are provided, all partition tables are listed.

create Create a partition table on given devices. The devices must be empty, i.e. must not have any
partitions on them. GPT partition table is created by default.

show Show detailed information about partition table on given devices. If no devices are provided, all of
them are displayed.

Options:

device Identifier of the device. Either one of:

• DeviceID of appropriate CIM_StorageExtent object. This is internal OpenLMI ID of the device
and it should be stable across system reboots.

• Device name directly in /dev directory, such as ‘/dev/sda’. This device name is available as
Name property of CIM_StorageExtent object.

• Name of MD RAID or logical volume. This method cannot be used when the name is not
unique, for example when there are two logical volumes with the same name, allocated from dif-
ferent volume groups. This name is available as ElementName property of CIM_StorageExtent
object.

–gpt Create GPT partition table (default).

–msdos Create MS-DOS partition table.

storage raid

MD RAID management.

Usage:

lmi storage raid list

lmi storage raid create [–name=<name>] <level> <device> ...

lmi storage raid delete <device> ...

lmi storage raid show [<device> ...]

Commands:

list List all MD RAID devices on the system.

create Create MD RAID array with given RAID level from list of devices.

delete Delete given MD RAID devices.

show Show detailed information about given MD RAID devices. If no devices are provided, all MD
RAID devices are displayed.

Options:

device Identifier of the device. Either one of:

• DeviceID of appropriate CIM_StorageExtent object. This is internal OpenLMI ID of the device
and it should be stable across system reboots.

• Device name directly in /dev directory, such as ‘/dev/sda’. This device name is available as
Name property of CIM_StorageExtent object.

28 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• Name of MD RAID or logical volume. This method cannot be used when the name is not
unique, for example when there are two logical volumes with the same name, allocated from dif-
ferent volume groups. This name is available as ElementName property of CIM_StorageExtent
object.

level RAID level. Supported levels are: 0, 1, 4, 5, 6, 10.

storage vg

Volume Group management.

Usage:

lmi storage vg list

lmi storage vg create [–extent-size=<size>] <name> <device> ...

lmi storage vg delete <vg> ...

lmi storage vg show [<vg> ...]

lmi storage vg modify <vg> [–add=<device>] ... [–remove=<device>] ...

Commands:

list List all volume groups on the system.

create Create Volume Group with given name from list of devices.

delete Delete given Volume Groups.

show Show detailed information about given Volume Groups. If no Volume Groups are provided, all of
them are displayed.

modify Add or remove Physical Volumes to/from given Volume Group.

Options:

device Identifier of the device. Either one of:

• DeviceID of appropriate CIM_StorageExtent object. This is internal OpenLMI ID of the device
and it should be stable across system reboots.

• Device name directly in /dev directory, such as ‘/dev/sda’. This device name is available as
Name property of CIM_StorageExtent object.

• Name of MD RAID or logical volume. This method cannot be used when the name is not
unique, for example when there are two logical volumes with the same name, allocated from dif-
ferent volume groups. This name is available as ElementName property of CIM_StorageExtent
object.

vg Name of the volume group, with or without /dev/ prefix.

size Requested extent size of the new volume group, by default in bytes. ‘T’, ‘G’, ‘M’ or ‘K’ suffix can
be used to specify other units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB (=1024 bytes). The
suffix is case insensitive, i.e. 1g = 1G = 1073741824 bytes.

-a <device> , –add=<device> Device to add to a Volume Group.

-r <device> , –remove=<device> Device to remove from a Volume Group.

3.1. OpenLMI client components 29

OpenLMI Documentation, Release latest

storage thinpool

Thin Pool management.

Usage:

lmi storage thinpool list

lmi storage thinpool create <name> <vg> <size>

lmi storage thinpool delete <tp> ...

lmi storage thinpool show [<tp> ...]

Commands:

list List all thin pools on the system.

create Create Thin Pool with given name and size from a Volume Group.

delete Delete given Thin Pools.

show Show detailed information about given Thin Pools. If no Thin Pools are provided, all of them are
displayed.

Options:

vg Name of the volume group, with or without /dev/ prefix.

tp Name of the thin pool, with or without /dev/ prefix.

size Requested extent size of the new volume group, by default in bytes. ‘T’, ‘G’, ‘M’ or ‘K’ suffix can
be used to specify other units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB (=1024 bytes). The
suffix is case insensitive, i.e. 1g = 1G = 1073741824 bytes.

storage thinlv

Thin Logical Volume management.

Usage:

lmi storage thinlv list [<tp> ...]

lmi storage thinlv create <tp> <name> <size>

lmi storage thinlv delete <tlv> ...

lmi storage thinlv show [<tlv> ...]

Commands:

list List available thin logical volumes on given thin pools. If no thin pools are provided, all thin logical
volumes are listed.

create Create a thin logical volume on given thin pool.

delete Delete given thin logical volume.

show Show detailed information about given Thin Logical Volumes. If no Thin Logical Volumes are
provided, all of them are displayed.

Options:

tp Name of the thin pool, with or without /dev/ prefix.

30 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

size Size of the new logical volume, by default in bytes. ‘T’, ‘G’, ‘M’ or ‘K’ suffix can be used to specify
other units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB (= 1024 bytes). The suffix is case
insensitive, i.e. 1g = 1G = 1073741824 bytes.

System command line reference

This command can display general system information.

system

Display general system information.

Usage:

lmi system

Command development

Do you want to write your own command? You are at the right place. As a newcomer, you should start with Tutorial.

Once you have your command ready, don’t forget to make it public in our repository.

Command versus Script:

Until now we’ve been using command as a term for a subcommand of LMI metacommand and a package (rpm/python
egg) containing it. In this documentation you’ll encounter another words seemingly meaning the same. Following
dictionary tries to clear out any confusion:

3.1. OpenLMI client components 31

OpenLMI Documentation, Release latest

Term Description
command

Either a subcommand of LMI metacommand or a
software package containing a script. It may have
several subcommands.

script

Python library utilizing LMIShell for
instrumenting CIM providers through a CIMOM
broker comming with one or more commands for
LMI metacommand.

subcommand

Same as command used in relation to either
metacommand or another command.

command wrapper

Implementation of a command in a script as a
subclass of LmiBaseCommand.

top-level command

Direct subcommand of LMI metacommand. It
appers in its help message.

end-point command

command without any subcommand. It handles
command-line arguments and renders output.

command multiplexer

command with one or more subcommands. They
do not handle command line arguments.

command name

Is a single word denoting command on a
command line.

command’s full name

All command names leading up to the command
optionally including the lmi. For example in
statement lmi -h myhost.example.org
storage fs create ext4 /dev/vda5
the full name of command create is lmi
storage fs create.

32 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Tutorial

This is a step-by-step tutorial on developing a script for OpenLMI providers. It explains how to create simple library
for instrumenting OpenLMI LogicalFile Provider, wrap its functionality with command wrapper and register it as a
subcommand of LMI metacommand.

Required knowledge You should be familiar with terms like CIM, cimom, schema, provider, DMTF profile. This
short tutorial should be enough to get you started.

You should also be familiar with scripting in python and LMIShell which we use heavily in snippets below.

Preparation You need tog-pegasus cimom up and running with openlmi-logicalfile providers installed
and registered on managed machine. There is a Quick Start Guide to assist you with setting it up. We will connect to
it from a client which needs the following installed:

• openlmi-python-base

• openlmi-tools

Note: RHEL clients will also need openlmi-scripts installed because LMI metacommand is not part of
OpenLMI Tools there.

Installing python dependencies For the first two items you may use standard rpms build for Fedora:

yum install openlmi-tools

Or you may install them to your user directory as python eggs with pip:

pip install openlmi-tools

Dependencies are solved for you automatically in both cases.

Note: On RHEL there are several possible scenarios:

1. install openlmi-tools as a python egg (see above)

2. install openlmi-tools from git (see below)

3. install both openlmi-tools and openlmi-scripts as rpms with EPEL repository enabled (for the latter
package)

Make sure you don’t mix above options.

Or directly from git repository. Please follow steps described there.

Setting up environment We’ll stick to the process described here that lets us develop quickly without the need to
reinstall anything while making changes.

First let’s check out our openlmi-scripts repository:

git clone https://github.com/openlmi/openlmi-scripts.git
cd openlmi-scripts

Now let’s set up our workspace:

3.1. OpenLMI client components 33

http://www.openlmi.org/using_lmishell
http://www.openlmi.org/QuickStart
https://fedoraproject.org/wiki/EPEL
https://github.com/openlmi/openlmi-scripts
https://github.com/openlmi/openlmi-scripts#developing-lmi-scripts

OpenLMI Documentation, Release latest

WSP=~/.python_workspace
mkdir $WSP
may be added to ‘$HOME/.profile‘ or ‘$HOME/.bashrc‘
export PYTHONPATH=$WSP:$PYTHONPATH
export PATH="$PATH:$WSP"

Making script structure We’ll use provided commands/make_new.py script to create the basic structure and
setup.py.skel file:

cd commands
this will ask us additional questions used to create setup.py.skel file
./make_new.py mylf

Because a script implementation for OpenLMI LogicalFile profile is already present in upstream repository (in
commands/logicalfile), we need to name our library distinctly (e.g. mylf).

Following structure should be created:

[dirtree] mylf child node doc child node _build child node cmdline.rst child node conf.py.skel child node
index.rst child node Makefile child node python.rst child node _static child node _templates child node lmi

child node __init__.py child node scripts child node __init__.py child node mylf child node __init__.py child
node Makefile child node README.md child node setup.cfg child node setup.py.skel ;

We should check that everything matches in mylf/setup.py.skel and correct any shortcomings.

setup.py is generated out of setup.py.skel template by running:

make setup

OpenLMI LogicalFile introduction OpenLMI LogicalFile is a CIM provider which provides a way to read infor-
mation about files and directories. The provider also allows to traverse the file hierarchy, create and remove empty
directories.

openlmi-tools/scripts/devel/../../_static/logicalfile.png

Figure 3.1: LogicalFile model

It consists mainly of few specializations of CIM_LogicalFile representing any type of file on filesystem,
LMI_UnixFile holding unix specific information for each such file and association classes between them.
CIM_LogicalFile has following key properties inherited by LMI_* subclasses above:

• Name

• CSName

• CSCreationClassName

• FSCreationClassName

• CreationClassName

• FSName

34 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Only those shown in bold are mandatory. Others are ignored when requesting an instance of CIM_LogicalFile.
This applies also to LMI_UnixFile with Name being replaced with LFName. None of the presented classes
supports enumeration of instances. Only references can be obtained.

With CreateInstance() and DeleteInstance() calls issued on class/object of LMI_UnixDirectory we
are able to create and delete directories.

Let’s write some code Before writing code that actually does anything useful, we start by specifying usage string.
It is a command line API. Writing it will give you a clear picture of what you’re going to implement and how it will
be used. Once done, all the subcommands can be implemented one by one in a straightforward way.

Writing usage string Usage string is a module’s documentation, help message and a prescription for command line
parser, all-in-one. Writing it is pretty straightforward. Let’s put it to mylf/lmi/scripts/mylf/cmd.py:

"""
Read informations about file system structure.

Usage:
%(cmd)s list [options] <directory>
%(cmd)s show [-L] <file>
%(cmd)s create <directory>
%(cmd)s delete <directory>

Options:
-t --type <type> Filter listed files by their type. One of:

any, file, device, directory, fifo, symlink, socket.
Defaults to any.

-L --dereference Causes symlink to be followed.
"""

The first line provides a short description that will be shown with

lmi help

after the command is registered. Text under Usage: and Options: are parsed by docopt. It is very well readable
but writing it may pose quite a challenge for the first time developer. Please refer to its documentation for more
information.

Note the %(cmd)s string which needs to be present instead of lmi mylf or similar command names.

Note also spaces that separate options from their descriptions. There must be a column of spaces at least 2 characters
wide. Otherwise docopt will treat description as a continuation of option specification.

Let’s add one more snippet so we can test it:

from lmi.scripts.common import command

MyLF = command.register_subcommands(’MyLF’, __doc__, {})

This creates a command multiplexer without any children (we’ll add them later).

And finally let’s modify our mylf/setup.py.skel by adding entry point:

entry_points={
’lmi.scripts.cmd’: [

’mylf = lmi.scripts.mylf.cmd:MyLF’,
],

}

3.1. OpenLMI client components 35

http://docopt.org

OpenLMI Documentation, Release latest

Now we can install it and test it:

cd mylf
make setup # make setup.py out of template
make sure the $WSP is in $PYTHONPATH
python setup.py develop --install-dir=$WSP
lmi help
lmi help mylf

We should be able to see the usage string we’ve written.

Implementing show command Now let’s implement the easiest command. Let’s start with appending following
snippet to mylf/lmi/scripts/mylf/__init__.py.

import os

from lmi.shell import LMIInstance, LMIInstanceName
from lmi.scripts.common import errors
from lmi.scripts.common import get_computer_system
from lmi.scripts.common import get_logger

LOG = get_logger(__name__)

def logical_file_type_name(file_identity):
"""
Get a name of file type for supplied instance of ‘‘CIM_LogicalFile‘‘.
"""
namemap = {

’lmi_datafile’ : ’file’,
’lmi_unixdevicefile’ : ’device’,
’lmi_unixdirectory’ : ’directory’,
’lmi_fifopipefile’ : ’fifo’,
’lmi_symboliclink’ : ’symlink’,
’lmi_unixsocket’ : ’socket’

}
try:

return namemap[file_identity.classname.lower()]
except KeyError:

LOG().warn(’Unhandled logical file class "%s".’,
file_identity.classname)

return ’unknown’

def permission_string(file_identity):
"""
Make an ls-like permission string for supplied instance of
‘‘CIM_LogicalFile‘‘.
"""
return ’’.join(l if getattr(file_identity, a) else ’-’

for l, a in zip(’rwx’, (’Readable’, ’Writeable’, ’Executable’)))

def get_logical_file_instance(ns, file_ident, dereference=False):
"""
Get an instance of ‘‘CIM_LogicalFile‘‘ corresponding to given file
identity.

:param file_ident: Either a file path or an instance of ‘‘LMI_UnixFile‘‘.
:param boolean dereference: Whether to follow symbolic links
"""

36 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

if isinstance(file_ident, basestring):
uf = get_unix_file_instance(ns, file_ident, dereference)

elif isinstance(file_ident, LMIInstanceName):
uf = file_ident.to_instance()

else:
uf = file_ident

return uf.first_associator(AssocClass=’LMI_FileIdentity’)

def get_unix_file_instance(ns, path, dereference=False):
"""
:param boolean dereference: Whether to follow symbolic links
:returns: Instance of ‘‘LMI_UnixFile‘‘ corresponding to given *path*.
"""
cs = get_computer_system(ns)
uf_name = ns.LMI_UnixFile.new_instance_name({

’CSCreationClassName’ : cs.classname,
’CSName’ : cs.name,
’LFName’ : path,
’LFCreationClassName’ : ’ignored’,
’FSCreationClassName’ : ’ignored’,
’FSName’ : ’ignored’,

})
try:

uf = uf_name.to_instance()
if dereference:

lf = get_logical_file_instance(ns, uf, False)
if logical_file_type_name(lf) == ’symlink’:

try:
target = lf.TargetFile
if not os.path.isabs(target):

target = os.path.abspath(
os.path.join(os.path.dirname(lf.Name), target))

recursively try to dereference
uf = get_unix_file_instance(ns, target, dereference)

except Exception as err:
LOG.warn(’failed to get link target "%s": %s’,

lf.TargetLink, err)
return uf

except:
raise errors.LmiFailed(’No such file or directory: "%s".’ % path)

First two functions turn their argument to a human readable form. The other two are somewhat special. They actually
interact with a broker. Each such function takes as a first argument a namespace object, LMIShell’s abstraction, which
acts as a liaison. All our communication is done through this object. We always name it ns. These are getters we will
need in our Show command. Getters usually return one or several instances of LMIInstanceName.

Now let’s place following into mylf/lmi/scripts/mylf/cmd.py.

from lmi.scripts import mylf
from lmi.scripts.common import command
from lmi.scripts.common import errors

class Show(command.LmiLister):
COLUMNS = (’Attribute’, ’Value’)

def transform_options(self, options):
options[’<path>’] = options.pop(’<file>’)

def execute(self, ns, path, _dereference):

3.1. OpenLMI client components 37

OpenLMI Documentation, Release latest

uf = mylf.get_unix_file_instance(ns, path, _dereference)
lf = mylf.get_logical_file_instance(ns, uf, _dereference)
return [

(’Path’ , lf.Name),
(’Type’ , mylf.logical_file_type_name(lf)),
(’User ID’ , uf.UserID),
(’Group ID’ , uf.GroupID),
(’Size’ , lf.FileSize),
(’Permissions’ , mylf.permission_string(lf))

]

And change MyLF command there like this:

MyLF = command.register_subcommands(’MyLF’, __doc__,
{ ’show’ : Show })

All is set up. To try it out:

$ lmi -h $HOST mylf show /root
Attribute Value
Path /root
Type directory
User ID 0
Group ID 0
Size 4096
Permissions r-x

Our Show command inherits from LmiLister which renderes a table. In order to do that it needs to know number
of columns and their headings which specifies COLUMNS property.

Most of the work is done in its execute()method. All parameters following namespace object come from command
line. First it collects the data, make them readable and then returns them as a list of rows.

Command line options need to be modified before passing them to object method. Several rules apply. We can see
that --dereference option is turned to _dereference parameter name. Replacing leading dashes with single
underscore is a default behaviour that you may customize.

Sometimes you may want to rename an option. This is a case of <file> argument that would be passed as a
file which is python’s built-in. Here comes transform_options() method into play. Any possible option
manipulation is allowed here. It may be used also to convert values to your liking.

Implementing list Most of necessary functionality has been implemented in previous snippet for the
show command. Following snippet is enough to generate all the files in directory. Put it again to
mylf/lmi/scripts/mylf/__init__.py.

def make_directory_instance_name(ns, directory):
"""
Retrieve object path of a directory.

:type directory: string
:param directory: Full path to the directory.
:rtype: :py:class:‘lmi.shell.LMIInstanceName.LMIInstanceName‘
"""
if directory != ’/’:

directory = directory.rstrip(’/’)
cs = get_computer_system(ns)
return ns.LMI_UnixDirectory.new_instance_name(

{ ’CSCreationClassName’ : cs.classname
, ’CSName’ : cs.name

38 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

, ’CreationClassName’ : ’LMI_UnixDirectory’
, ’FSCreationClassName’ : ’LMI_LocalFileSystem’
, ’FSName’ : ’’
, ’Name’ : directory})

def get_directory_instance(ns, directory):
"""
Retrieve instance of ‘LMI_UnixDirectory‘.

:type directory: string of :py:class:‘lmi.shell.LMIInstanceName.LMIInstanceName‘
:param directory: Full path to the directory or its instance name.
:rtype: :py:class:‘lmi.shell.LMIInstance.LMIInstance‘
"""
if isinstance(directory, basestring):

directory = make_directory_instance_name(ns, directory)
if isinstance(directory, LMIInstanceName):

directory = directory.to_instance()
return directory

def list_directory(ns, directory, file_type=’any’):
"""
Yields instances of ‘‘CIM_LogicalFile‘‘ representing direct children of the
given directory.

:param directory: Either a file path or an instance of
‘‘LMI_UnixDirectory‘‘.

:param file_type: Filter of files made by checking their type. One of: ::

{’any’, ’file’, ’device’, ’directory’, ’fifo’, ’symlink’, ’socket’}
"""
def _generate_children():

for child in get_directory_instance(ns, directory).associators(
AssocClass=’LMI_DirectoryContainsFile’,
Role=’GroupComponent’,
ResultRole=’PartComponent’):

if (file_type and file_type != ’any’
and logical_file_type_name(child) != file_type):
continue

yield child
return sorted(_generate_children(), key=lambda i: i.Name)

Note the associators() call on LMI_UnixDirectory instance. It enumerates all CIM_LogicalFile in-
stances that are referenced by LMI_DirectoryContainsFile associations. These represent a relation of parent
directory and its direct children. Parent directory is referenced with GroupComponent role while the children with
PartComponent. It’s advisable to always provide as much information to calls like:

• associators()

• associator_names()

• references()

• reference_names()

as possible. Without the AssocClass parameter given, broker would try to enumerate all instrumented association
classes possible, resulting in very poor performance. Both Role and ResultRole parameters need to be given here,
otherwise a parent directory of the one being enumerated would also appear in output.

Following subclass of LmiInstanceLister needs to be added to mylf/lmi/scripts/mylf/cmd.py and
added to MyLF subcommands dictionary (omitted for now).

3.1. OpenLMI client components 39

OpenLMI Documentation, Release latest

class List(command.LmiInstanceLister):
CALLABLE = mylf.list_directory
PROPERTIES = (

’Name’,
(’Type’, mylf.logical_file_type_name),
(’Permissions’, mylf.permission_string),
(’Size’, ’FileSize’))

def verify_options(self, options):
if options[’--type’] is not None \

and not options[’--type’].lower() in {
’any’, ’file’, ’directory’, ’symlink’, ’dev’, ’socket’,
’fifo’}):

raise errors.LmiInvalidOptions(
’Unsupported type: %s’ % options[’--type’])

def transform_options(self, options):
file_type = options.pop(’--type’)
if file_type is None:

file_type = ’any’
options[’file-type’] = file_type

Instead of defining our own execute() method, we just associate list_directory() function with List
command using CALLABLE property. Thanks to the ability to transform option names in any way, we are not limited
to the use of arguments as listed in usage string. Apart from renaming options, we also check the value of --type
option. Overriding verify_options() to check for validity of options is the more preferred approach compared
to delayed checking in associated function.

Implementing create and delete Let’s again start with content of
mylf/lmi/scripts/mylf/__init__.py module.

def create_directory(ns, directory):
"""
Create a directory.

:type directory: string
:param directory: Full path to the directory.
"""
ns.LMI_UnixDirectory.create_instance(

make_directory_instance_name(ns, directory).path.keybindings)

def delete_directory(ns, directory):
"""
Delete an empty directory.

:param directory: Either a file path or an instance of
‘‘LMI_UnixDirectory‘‘.

"""
get_directory_instance(ns, directory).delete()

create_instance() call of any LMIClass creates a new instance, in this case we create an in-
stance of LMI_UnixDirectory. If it exists already, an exception will be raised. On the other hand,
delete_directory() operates on an LMIInstance which must exists. If directory does not exist or it’s not
empty, an exception will be raised.

Now let’s move on to mylf/lmi/scripts/mylf/cmd.py:

40 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

class Create(command.LmiCheckResult):
EXPECT = None
CALLABLE = mylf.create_directory

class Delete(command.LmiCheckResult):
EXPECT = None
CALLABLE = mylf.delete_directory

LmiCheckResult is a special command that prints no useful information. It allows us to check, whether the
associated function returns expected result and prints an error if not. Here we expect None. Associated functions in
this case throw an exception upon any error which have the same effect.

Test it
lmi -h $HOST mylf create /root/some_directory
try it for the second time (it will fail)
lmi -h $HOST mylf create /root/some_directory
now let’s delete it
lmi -h $HOST mylf delete /root/some_directory
try it for the second time (it will fail)
lmi -h $HOST mylf delete /root/some_directory

Summary Now that the script is ready and tested, we may commit it, push it, do a pull request and host it on PyPI:

python setup.py register
python setup.py sdist upload

Source code of this example is available as a tarball.

Basics

This provides a general overview on what script is, how is it written and is interfaced with.

Prerequisities Reader should be familiar with a CIM (Common Information Model). He should have a general idea
about, what OpenLMI is and what it does. He should get familiar with LMIShell, which is a python binary shipped
with OpenLMI client components.

Also user should be familiar with standard *nix command line utilities 1.

Introduction By a script in this document we mean:

• Python library utilizing LMIShell for instrumenting CIM providers through a CIMOM broker. It resides in
lmi.scripts.<script_name> package. Where <script_name> usually corresponds to some LMI
profile name.

• Command wrappers for this library as a set of classes inheriting from LmiBaseCommand. These may create a
tree-like hierarchy of commands. They are the entry points of LMI metacommand to the wrapped functionality
of library.

Command wrappers are part of the library usually grouped in a single module named after the lmi command or cmd:

lmi.scripts.<script_name>.cmd

1 Described by a POSIX.

3.1. OpenLMI client components 41

https://pypi.python.org/pypi
http://dmtf.org/standards/cim
http://openlmi.org
http://www.openlmi.org/using_lmishell
http://www.openlmi.org/using_lmishell

OpenLMI Documentation, Release latest

Writing a library Library shall consist of a set of functions taking a namespace or connection object as a first
argument. There are no special requirements on how to divide these functions into submodules. Use common sense.
Smaller scripts can have all functionality in lmi/scripts/<script_name>/__init__.py module. With
wrappers usually contained in lmi/scripts/<script_name>/cmd.py.

Library should be written with an ease of use in mind. Functions should represent possible use cases of what can be
done with particular providers instead of wrapping 1-to-1 a CIM class’s methods in python functions.

Any function that shall be called by a command wrapper and communicates with a CIMOM must accept a namespace
object named as ns. It’s an instance of LMINamespace providing quick access to represented CIM namespace 2 and
its classes. It’s also possible to specify that function shall be passed a raw LMIConnection object. For details see
Function invocation.

Service example Suppose we have a service profile in need of ython interface. Real provider implementation can
be found at src/service directory in upstream git 3. For more information please refer to service description.

As you may see, this implements single CIM class LMI_Service with a few useful methods such as:

• StartService()

• StopService()

We’d like to provide a way how to list system services, get a details for one of them and allow to start, stop and restart
them.

Simplified 4 version of some of these functions may look like this:

def list_services(ns, kind=’enabled’):
for service in sorted(ns.LMI_Service.instances(),

key=lambda i: i.Name):
if kind == ’disabled’ and service.EnabledDefault != \

ns.LMI_Service.EnabledDefaultValues.Disabled:
continue

if kind == ’enabled’ and service.EnabledDefault != \
ns.LMI_Service.EnabledDefaultValues.Enabled:

list only enabled
continue

yield service

It yields instances of LMI_Service cim class. We prefer to use yield instead of return when enumerating
instances because of memory usage reduction. For example when the user limits the number of instances listed. With
yield the number of iterations will be reduced automatically.

from lmi.shell import LMIInstanceName
from lmi.scripts.common import get_logger
from lmi.scripts.common.errors import LmiFailed

LOG = get_logger(__name__)

def start_service(ns, service):
if isinstance(service, basestring):

let’s accept service as a string
inst = ns.LMI_Service.first_instance(key="Name", value=service)
name = service

else: # or as LMIInstance or LMIInstanceName
inst = service

2 Default namespace is "root/cimv2".
3 view: https://fedorahosted.org/openlmi/browser/openlmi-providers git: ssh://git.fedorahosted.org/git/openlmi-providers.git/
4 Simplified here means that there are no documentation strings and no type checking.

42 Chapter 3. Table of Contents

https://fedorahosted.org/openlmi/wiki/service
https://fedorahosted.org/openlmi/browser/openlmi-providers

OpenLMI Documentation, Release latest

name = inst.path[’Name’]
if inst is None:

raise LmiFailed(’No such service "%s".’ % name)
if isinstance(inst, LMIInstanceName):

we need LMIInstance
inst = inst.to_instance()

res = inst.StartService()
if res == 0:

LOG().debug(’Started service "%s" on hostname "%s".’,
name, ns.hostname)

return res

In similar fashion, stop_service, restart_service and others could be written.

ns argument typically represents root/cimv2 namespace which is the main implementation namespace for
OpenLMI providers. One could also make these functions act upon a connection object like this:

def get_instance(c, service):
inst = c.root.cimv2.LMI_Service.first_instance(

key="Name", value=service)
if inst is None:

raise LmiFailed(’No such service "%s".’ % service)
return inst

User can then easily access any other namespace he may need. Command classes need to be informed about an object
type the wrapped function expects (see Function invocation).

The LOG variable provides access to the logger of this module. Messages logged in this way end up in a log file 5 and
console. Implicitly only warnings and higher priority messages are logged into a console. This can be changed with
metacommand’s parameteres.

If operation fails due to some unexpected error, please raise LmiFailed exception with human readable description.

See also:

Exceptions for conventions on using exceptions.

Upstream git for more real world examples.

Command wrappers overview They are a set of command classes wrapping up library’s functionality. They are
structured in a tree-like hierarchy where the root 6 command appears in a help message of LMI metacommand. All
commands are subclasses of LmiBaseCommand.

Behaviour of commands is controlled by class properties such as these:

class Show(command.LmiShowInstance):
CALLABLE = ’lmi.scripts.service:get_instance’
PROPERTIES = (

’Name’,
’Caption’,
(’Enabled’, lambda i: i.EnabledDefault == 2),
(’Active’, ’Started’),
’Status’)

Example above contains definition of Show command wrapper for instances of LMI_Service. Its associated func-
tion is get_instance() located in lmi.scripts.service module 7. Properties used will be described in
detail later. Let’s just say, that PROPERTIES specify a way how the instance is rendered.

5 If logging to a file is enabled in configuration.
6 Also called a top-level command.
7 Precisely in an __init__.py module of this package.

3.1. OpenLMI client components 43

https://github.com/openlmi/openlmi-scripts

OpenLMI Documentation, Release latest

Top-level commands Are entry points of a script library. They are direct subcommands of lmi. For example:

$ lmi help
$ lmi service list
$ lmi sw show openlmi-providers

help, service and sw are top-level commands. One script (such as service above) can provide one or more
of them. They need to be listed in a setup.py script in entry_points argument of setup() function. More
details will be noted later in Setup script.

They contain usage string which is a documentation and prescription of command-line arguments in one string. This
string is printed when user requests command’s help:

$ lmi help service

Usage string looks like this:

"""
System service management.

Usage:
%(cmd)s list [--all | --disabled]
%(cmd)s start <service>

Options:
--all List all services available.
--disabled List only disabled services.

"""

Format of this string is very important. It’s parsed by a docopt command line parser which uses it for parsing command-
line arguments. Please refer to its documentation for details.

Note: There is one deviation to common usage string. It’s the use of %(cmd)s formatting mark. It is replaced
with full command’s name. Full name means that all subcommands and binary name prefixing current command on
command line are part of it. So for example full name of command list in a following string passed to command line:

lmi sw list pkgs

is lmi sw list.

If parsing sw usage, it is just lmi sw.

The formatting mark is mandatory.

Options and arguments given on command-line are pre-processed before they are passed to end-point command. You
should get familier with it before writing your own usage strings.

End-point commands Are associated with one or more function of script library. They handle the following:

1. call docopt parser on command line arguments

2. make some name pre-processing on them (see Options pre-processing)

3. verify them (see End-point commands)

4. transform them (see End-point commands)

5. pass them to associated function

6. collect results

44 Chapter 3. Table of Contents

http://docopt.org/
http://docopt.org/

OpenLMI Documentation, Release latest

7. render them and print them

Developper of command wrappers needs to be familiar with each step. We will describe them later in details.

There are following end-point commands available for subclassing:

• LmiCheckResult (see LmiCheckResult)

• LmiLister (see LmiLister)

• LmiInstanceLister (see LmiInstanceLister)

• LmiShowInstance (see LmiShowInstance)

They differ in how they render the result obtained from associated function.

These are documented in depth in End-point commands.

Command multiplexers Provide a way how to group multiple commands under one. Suppose you want to list
packages, repositories and files. All of these use cases need different arguments, and render different information
thus they should be represented by independent end-point commands. What binds them together is the user’s intent
to list something. He may wish to do other operation like show, add, remove etc. with the same subject. Having all
combination of these intents and subjects would generate a lot of commands under the top-level one. Let’s instead
group them under particular intent like this:

• sw list packages

• sw list repositories

• sw list files

• sw show package

To reflect it in our commands hierarchy, we need to use LmiCommandMultiplexer command.

class Lister(command.LmiCommandMultiplexer):
""" List information about packages, repositories or files. """
COMMANDS = {

’packages’ : PkgLister,
’repositories’ : RepoLister,
’files’ : FileLister

}

Where COMMANDS property maps command classes to their names. Each command multiplexer consumes one com-
mand argument from command line, denoting its direct subcommand and passes the rest of options to it. In this way
we can create arbitrarily tall command trees.

Top-level command is nothing else than a subclass of LmiCommandMultiplexer.

Specifying profile and class requirements Most commands require some provider installed on managed machine
to work properly. Each such provider should be represented by an instance of CIM_RegisteredProfile on
remote broker. This instance looks like this (in MOF syntax):

instance of CIM_RegisteredProfile {
InstanceID = "OpenLMI+OpenLMI-Software+0.4.2";
RegisteredOrganization = 1;
OtherRegisteredOrganization = "OpenLMI";
RegisteredVersion = "0.4.2";
AdvertiseTypes = [2];
RegisteredName = "OpenLMI-Software";

};

3.1. OpenLMI client components 45

OpenLMI Documentation, Release latest

We are interested just in RegisteredName and RegisteredVersion properties that we’ll use for requirement
specification.

Requirement is written in LMIReSpL language. For its formal definition refer to documentation of parser. Since the
language is quite simple, few examples should suffice:

’OpenLMI-Software < 0.4.2’ Requires OpenLMI Software provider to be installed in version
lower than 0.4.2.

’OpenLMI-Hardware == 0.4.2 & Openlmi-Software >= 0.4.2’ Requires both hard-
ware and software providers to be installed in particular version. Short-circuit evaluation is utilized
here. It means that in this example OpenLMI Software won’t be queried unless OpenLMI Hardware
is installed and having desired version.

’profile "OpenLMI-Logical File" > 0.4.2’ If you have spaces in the name of profile,
surround it in double quotes. profile keyword is optional. It could be also present in previous
examples.

Version requirements are not limited to profiles only. CIM classes may be specified as well:

’class LMI_SoftwareIdentity >= 0.3.0 & OpenLMI-LogicalFile’ In case of class
requirements the class keyword is mandatory. As you can see, version requirement is optional.

’! (class LMI_SoftwareIdentity | class LMI_UnixFile)’ Complex expressions
can be created with the use of brackets and other operators.

One requirement is evaluated in these steps:

Profile requirement

1. Query CIM_RegisteredProfile for instances with RegisteredName matching given
name. If found, go to 2. Otherwise query CIM_RegisteredSubProfile 8 for instances
with RegisteredName matching given name. If not found return False.

2. Select the (sub)profile with highest version and go to 3.

3. If the requirement has version specification then compare it to the value of
RegisteredVersion using given operator. If the relation does not apply, return
False.

4. Return True.

Class requirement

1. Get specified class. If not found, return False.

2. If the requirement has version specification then compare it to the value of Version 9 qualifier
of obtained class using given operator. And if the relation does not apply, return False.

3. Return True.

Now let’s take a look, where these requirements can be specified. There is a special select command used to specify
which command to load for particular version on remote broker. It can be written like this:

from lmi.scripts.common.command import LmiSelectCommand

class SoftwareCMD(LmiSelectCommand):

SELECT = [
(’OpenLMI-Software >= 0.4.2 & OpenLMI-LogicalFile’
, ’lmi.scripts.software.current.SwLFCmd’)

8 This is a subclass of CIM_RegisteredProfile thus it has the same properties.
9 If the Version qualifier is missing, -1 will be used for comparison instead of empty string.

46 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

, (’OpenLMI-Software >= 0.4.2’
, ’lmi.scripts.software.current.SwCmd’)

, (’OpenLMI-Software’, ’lmi.scripts.software.pre042.SwCmd’)
]

It says to load SwLFCmd command in case both OpenLMI Software and OpenLMI LogicalFile providers are installed.
If not, load the SwCMD from current module for OpenLMI Software with recent version and fallback to SwCmd
for anything else. If the OpenLMI Software provider is not available at all, no command will be loaded and exception
will be raised.

Previous command could be used as an entry point in your setup.py script (see the Entry points). There is also a
utility that makes it look better:

from lmi.scripts.common.command import select_command

SoftwareCMD = select_command(’SoftwareCMD’,
(’OpenLMI-Software >= 0.4.2 & OpenLMI-LogicalFile’
, ’lmi.scripts.software.current.SwLFCmd’),
(’OpenLMI-Software >= 0.4.2’, ’lmi.scripts.software.current.SwCmd’),
(’OpenLMI-Software’, ’lmi.scripts.software.pre042.SwCmd’)

)

See also:

Documentation of LmiSelectCommand and select_command.

And also notes on related LmiSelectCommand properties.

Command wrappers module Usually consists of:

1. license header

2. usage dostring - parseable by docopt

3. end-point command wrappers

4. single top-level command

The top-level command is usally defined like this:

Service = command.register_subcommands(
’Service’, __doc__,
{ ’list’ : Lister
, ’show’ : Show
, ’start’ : Start
, ’stop’ : Stop
, ’restart’ : Restart
},

)

Where the __doc__ is a usage string and module’s doc string at the same time. It’s mentioned in point 2. Service
is a name, which will be listed in entry_points dictionary described below. The global variable’s name we assign
to should be the same as the value of the first argument to register_subcommands(). The last argument here is
the dictionary mapping all subcommands of service to their names 10.

Egg structure Script library is distributed as a python egg, making it easy to distribute and install either to system
or user directory.

10 Taken from older version of storage script.

3.1. OpenLMI client components 47

http://docopt.org/

OpenLMI Documentation, Release latest

Following tree shows directory structure of service egg residing in upstream git:

[dirtree] commands/service child node lmi child node __init__.py child node scripts child node __init__.py child
node service child node cmd.py child node __init__.py child node Makefile child node README.md child

node setup.cfg child node setup.py.skel ;

This library then can be imported with:

from lmi.scripts import service

commands/service/lmi/scripts/service must be a package (directory with __init__.py) because
lmi.scripts is a namespace package. It can have arbitrary number of modules and subpackages. The care should
be taken to make the API easy to use and learn though.

Use provided commands/make_new.py script to generated it.

Setup script Follows a minimal example of setup.py.skel script for service library.

from setuptools import setup, find_packages
setup(

name="openlmi-scripts-service",
version="@@VERSION@@",
description=’LMI command for system service administration.’,
url=’https://github.com/openlmi/openlmi-scripts’,
platforms=[’Any’],
license="BSD",
install_requires=[’openlmi-scripts’],
namespace_packages=[’lmi’, ’lmi.scripts’],
packages=[’lmi’, ’lmi.scripts’, ’lmi.scripts.service’],

entry_points={
’lmi.scripts.cmd’: [

’service = lmi.scripts.service.cmd:Service’,
],

},
)

It’s a template with just one variable @@VERSION@@ being replaced with recent scripts version by running make
setup command.

Entry points The most notable argument here is entry_points which is a dictionary containing python
namespaces where plugins are registered. In this case, we register single top-level command called service in
lmi.scripts.cmd namespace. This particular namespace is used by LMI metacommand when searching for reg-
istered user commands. Service is a command multiplexer, created with a call to register_subcommands()
grouping end-point commands together.

Next example shows set up with more top-level commands 11:

entry_points={
’lmi.scripts.cmd’: [

’fs = lmi.scripts.storage.fs_cmd:Fs’,
’partition = lmi.scripts.storage.partition_cmd:Partition’,
’raid = lmi.scripts.storage.raid_cmd:Raid’,
’lv = lmi.scripts.storage.lv_cmd:Lv’,
’vg = lmi.scripts.storage.vg_cmd:Vg’,
’storage = lmi.scripts.storage.storage_cmd:Storage’,
’mount = lmi.scripts.storage.mount_cmd:Mount’,

11 These names must exactly match the names in usage strings.

48 Chapter 3. Table of Contents

https://github.com/openlmi/openlmi-scripts

OpenLMI Documentation, Release latest

],
},

Conventions There are several conventions you should try to follow in your shiny scripts.

Logging messages In each module where logging facilities are going to be used, define global varibale LOG like
this:

from lmi.scripts.common import get_logger

LOG = get_logger(__name__)

It’s a callable used throughout particular module in this way:

LOG().warn(’All the data of "%s" will be lost!’, partition)

Each message should be a whole sentence. It shall begin with an upper case letter and end with a dot or other sentence
terminator.

Bad example:

LOG().info(’processing %s’, card)

Exceptions Again all the exceptions should be initialized with messages forming a whole sentence.

They will be catched and printed on stderr by LMI metacommand. If the Trace option in Section [Main] is on,
traceback will be printed. There is just one exception. If the exception inherits from LmiError, traceback won’t be
printed unless verbosity level is the highest one as well:

self refers to some command
self.app.config.verbosity == self.app.config.OUTPUT_DEBUG

This is a feature allowing for common error use-cases to be gracefully handled. In your scripts you should stick to
using LmiFailed for such exceptions.

Following is an example of such a common error-case, where printing traceback does not add any interesting informa-
tion:

iname = ns.LMI_Service.new_instance_name({
"Name": service,
"CreationClassName" : "LMI_Service",
"SystemName" : cs.Name,
"SystemCreationClassName" : cs.CreationClassName

})
inst = iname.to_instance()
if inst is None:

raise errors.LmiFailed(’No such service "%s".’ % service)
process the service instance

service is a name provided by user. If such a service is not found, inst will be assigned None. In this case we
don’t want to continue in script’s execution thus we raise an exception. We provide very clear message that needs no
other comment. We don’t want any traceback to be printed, thus the use of LmiFailed.

Debugging To hunt down problems of your script during its development, metacommand comes with few options
to assist you:

3.1. OpenLMI client components 49

OpenLMI Documentation, Release latest

--trace This option turns on logging of tracebacks. Any exception but LmiErrorwill be logged with
traceback to stderr unless --quite option is on. LmiError will be logged with traceback if
the verbosity (-v) is highest as well.

-v Raise a verbosity. Pass it twice to make the verbosity highest. That will cause a lot of messages being
produced to stderr. It also turns on logging of tracebacks for LmiError if --trace option is
on as well.

--log-file Allows to specify output file, where logging takes place. Logging level is not affected by
-v option. It can be specified in configuration file.

While you debug it’s convenient to put above in your configuration file ~/.lmirc:

[Main]
Print tracebacks.
Trace = True

[Log]
OutputFile = /tmp/lmi.log
Logging level for OutputFile.
Level = DEBUG

See also:

Configuration

See also:

Docopt documentation, Command classes and Command properties.

Command classes

Before reading this, please make sure you’re familiar with Command wrappers overview.

End-point commands Were already introduced before (see End-point commands). We’ll dive into details here.

Every end-point command allows to verify and transform options parsed by docopt before they are passed to associated
function. This can happen in methods:

verify_options(self, options) Taking pre-processed options dictionary as a first argument. Properties
affecting this pre-processing can be found in Options pre-processing. This method shall check option values or
their combinations and raise LmiInvalidOptions if any inconsistency is discovered.

Example usage:

class FileLister(command.LmiInstanceLister):
DYNAMIC_PROPERTIES = True

def verify_options(self, options):
file_types = { ’all’, ’file’, ’directory’, ’symlink’

, ’fifo’, ’device’}
if (options[’--type’] is not None

and options[’--type’] not in file_types):
raise errors.LmiInvalidOptions(

’Invalid file type given, must be one of %s’ %
file_types)

50 Chapter 3. Table of Contents

http://docopt.org/
http://docopt.org/

OpenLMI Documentation, Release latest

See also:

API documentation on verify_options()

transform_options(self, options) Takes verified options dictionary which it modifies in place.

Example usage:

class Lister(command.LmiLister):
COLUMNS = (’Device’, ’Name’, "ElementName", "Type")

def transform_options(self, options):
"""
Rename ’device’ option to ’devices’ parameter name for better
readability.
"""
options[’<devices>’] = options.pop(’<device>’)

See also:

API documentation on transform_options()

Above methods can be used to process options in a way that any script library function can be called. In case we need
more control over what is called or when we want to decide at runtime which function shall be called, we may override
execute() method instead. Example of this may be found at Associating a function.

LmiCheckResult This command invokes associated function on hosts in session, collects results from them and
compares them to an expected value. It does not produce any output, when all returned values are expected.

This command class is very useful when wrapping up some CIM class’s method such as
LMI_Service::StartService(). Example can be seen in Property descriptions.

Its specific properties are listed in LmiCheckResult properties.

See also:

API documentation on LmiCheckResult

LmiLister Prints tablelike data. It expects associated function to return its result in form:

[row1, row2, ...]

Where rowX is a tuple containing row values. Each such row is list or tuple of the same length. There is a
property COLUMNS defining column names 12 (see LmiLister properties). Generator is preferred over a list of rows.

class RaidList(command.LmiLister):
COLUMNS = (’Name’, "Level", "Nr. of members")

def execute(self, ns):
"""
Implementation of ’raid list’ command.
"""
for r in raid.get_raids(ns):

members = raid.get_raid_members(ns, r)
yield (r.ElementName, r.Level, len(members))

Could also be written as:
#return [(r.ElementName, r.Level, len(raid.get_raid_members(ns, r)))
for r in raid.get_raids(ns)]

12 Having the same length as each row in returned data.

3.1. OpenLMI client components 51

OpenLMI Documentation, Release latest

produces:

$ lmi -h $HOST storage raid list
Name Level Nr. of members
raid5 5 3

If COLUMNS property is omitted, returned value shall take the following form instead:

(columns, data)

Where columns has the same meaning as COLUMNS as a class property and data is the result of previous case 13.

def get_thin_pools(ns, verbose):
for vg in lvm.get_tps(ns):

extent_size = size2str(vg.ExtentSize, self.app.config.human_friendly)
if verbose:

total_space = size2str(vg.TotalManagedSpace,
self.app.config.human_friendly)

yield (vg.ElementName, extent_size, total_space)
else:

yield (vg.ElementName, extent_size)

class ThinPoolList(command.LmiLister):

def execute(self, ns):
"""
Implementation of ’thinpool list’ command.
"""
columns = [’ElementName’, "ExtentSize"]
if self.app.config.verbose:

columns.extend(["Total space"])
return (columns, get_thin_pools(ns, self.app.config.verbose))

Produces:

$ lmi -H -h $HOST storage thinpool list
ElementName ExtentSize
tp1 4M
$ # The same with increased verbosity
$ lmi -v -H -h $HOST storage thinpool list
ElementName ExtentSize Total space
tp1 4M 1024M

See also:

API documentation on LmiLister

LmiInstanceLister Is a variant of LmiLister. Instead of rows being tuples, here they are instances of some
CIM class. Instead of using COLUMNS property for specifying columns labels, PROPERTIES is used for the same
purpose here. Its primary use is in specifying which properties of instances shall be rendered in which column. This
is described in detail in LmiShowInstance and LmiInstanceLister properties.

The expected output of associated function is therefore:

[instance1, instance2, ...]

Again, usage of generators is preferred.

See also:
13 Generator or a list of rows.

52 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

API documentation on LmiInstanceLister

LmiShowInstance Renders a single instance of some CIM class. It’s rendered in a form of two-column table,
where the first column contains property names and the second their corresponding values. Rendering is controlled in
the same way as for LmiInstanceLister (see LmiShowInstance and LmiInstanceLister properties).

See also:

API documentation on LmiShowInstance

Command multiplexers Group a list of commands under one. They were introduced earlier. Their children can be
end-point commands as well as multiplexers. Thus arbitrary tall command trees can be constructed - though not being
very practical.

Multiplexer works like this

1. it consumes one argument from command line

2. selects one of its subcommands based on consumed argument

3. passes the rest of arguments to selected subcommand and executes it

4. returns the result to a caller

For example consider following list of arguments:

storage raid create --name raid5 5 /dev/vdb /dev/vdc /dev/vdd

LMI metacommand consumes storage command multiplexer and passes the rest to it:

Storage().run(["raid", "create", "--name", "raid5", "5", "/dev/vdb",
"/dev/vdc", "/dev/vdd"])

Storage, which can be defined like this:

Storage = command.register_subcommands(
’storage’, __doc__,
{ ’tree’ : Tree,
’partition’: lmi.scripts.storage.cmd.partition.Partition,
’fs’ : lmi.scripts.storage.cmd.fs.FS,
’raid’ : lmi.scripts.storage.cmd.raid.Raid,

},
)

, consumes the first argument and passes the rest to the raid command which is again a multiplexer defined like this:

class Raid(command.LmiCommandMultiplexer):
OWN_USAGE = __doc__
COMMANDS = {

’list’ : RaidList,
’create’ : RaidCreate,
’delete’ : RaidDelete,
’show’ : RaidShow,

}

create end-point command will then be invoked with:

["--name", "raid5", "5", "/dev/vdb", "/dev/vdc", "/dev/vdd"]

Note: Each above multiplexer is defined in its own module with usage string at its top. It is far more legible than
having couple of multiplexers sharing single module.

3.1. OpenLMI client components 53

OpenLMI Documentation, Release latest

Splitting usage string Multiplexers delegating work to children multiplexers, like in the example above, need to be
given a special usage string.

Every multiplexer subcommand in the usage string must be followed with:

<cmd> [<args> ...]

Like in the usage of Storage above:

"""
Basic storage device information.

Usage:
%(cmd)s tree [<device>]
%(cmd)s partition <cmd> [<args> ...]
%(cmd)s fs <cmd> [<args> ...]
%(cmd)s raid <cmd> [<args> ...]

"""

cmd and args may be renamed to your liking. Only the form matters. It ensures that anything after the cmd won’t
be inspected by this multiplexer – the work is delegated to the children.

As you can see, end-point and multiplexer commands may be freely mixed. The tree end-point command does not
have its own usage string because all its arguments are parsed by Storage.

See also:

General and class specific properties in Command properties.

Command properties

As noted before in End-point commands, command at first tries to process input arguments, calls an associated function
and then renders its result. We’ll now introduce properties affecting this process.

Command class properties are written in their bodies and handled by their metaclasses. After being processed, they
are removed from class. So they are not accessible as class attributes or from their instances.

Options pre-processing Influencing properties:

• OPT_NO_UNDERSCORES (opt_no_underscores)

• ARG_ARRAY_SUFFIX (arg_array_suffix)

• OWN_USAGE (own_usage)

docopt will make a dictionary of options based on usage string such as the one above (Usage string). Options dictionary
matching this example looks like this:

{ ’list’ : bool # Usage:
, ’--all’ : bool # %(cmd)s list [--all | --disabled]
, ’--disabled’ : bool # %(cmd)s start <service>
, ’start’ : bool #
, ’<service>’ : str # Options:
} # --all List all services available.

--disabled List only disabled services.

54 Chapter 3. Table of Contents

http://docopt.org/

OpenLMI Documentation, Release latest

Values of this dictionary are passed to an associated function as arguments with names created out of matching keys.
Since argument names can not contain characters such as <, >, -, etc., these need to be replaced. Process of
renaming of these options can be described by the following pseudo algorithm:

1. arguments enclosed in brackets are un-surrounded – brackets get removed

"<service>" -> "service"

2. arguments written in upper case are made lower cased

"FILE" -> "file"

3. prefix of short and long options made of dashes shall be replaced with single underscore

"-a" -> "_a"
"--all" -> "_all"

4. any non-empty sequence of characters not allowed in python’s identitier shall be replaced with a single under-
score

"_long-option" -> "_long_option"
"special--cmd-#2" -> "special_cmd_2"

Points 3 and 4 could be merged into one. But we separate them due to effects of OPT_NO_UNDERSCORES property
described below.

See also:

Notes in End-point commands for method :py:meth‘lmi.scripts.common.command.endpoint.LmiEndPointCommand.transform_options‘
which is issued before the above algorithm is run.

Treating dashes Single dash and double dash are special cases of commands.

Double dash in usage string allows to pass option-like argument to a script e.g.:

lmi file show -- --file-prefix-with-double-dash

Without the ’--’ argument prefixing the file, docopt would throw an error because of
--file-prefix-with-double-dash being treated as an unknown option. This way it’s correctly treated as
an argument <file> given the usage string:

Usage: %(cmd)s file show [--] <file>

Double dash isn’t passed to an associated function.

Single dash on a command line is commonly used to specify stdout or stdint. For example in the following
snippet:

Usage: %(cmd)s file copy (- | <file>) <dest>

’-’ stands for standard input which will be read instead of a file if the user wishes to.

Property descriptions

OPT_NO_UNDERSCORES [bool (defaults to False)] Modifies point 3 of options pre-processing. It causes the
prefix of dashes to be completely removed with no replacement:

"--long-options" -> "long-option"

3.1. OpenLMI client components 55

http://docopt.org/

OpenLMI Documentation, Release latest

This may not be save if there is a command with the same name as the option being removed. Setting this
property to True will cause overwriting the command with a value of option. A warning shall be echoed if
such a case occurs.

ARG_ARRAY_SUFFIX [str (defaults to "")] Adds additional point (5) to options_transform_algorithm. All repeat-
able arguments, resulting in a list of items, are renamed to <original_name><suffix> 14. Repeatable
argument in usage string looks like this:

"""
Usage: %(cmd)s start <service> ...
"""

Causing all of the <service> arguments being loaded into a list object.

OWN_USAGE [bool (defaults to False)] Says whether the documentation string of this class is a usage string. Each
command in hierarchy can have its own usage string.

This can also be assigned a usage string directly:

class MySubcommand(LmiCheckResult):
"""
Class doc string.
"""
OWN_USAGE = "Usage: %(cmd)s --opt1 --opt1 <file> <args> ..."
EXPECT = 0

But using a boolean value is more readable:

class MySubcommand(LmiCheckResult):
"""
Usage: %(cmd)s --opt1 --opt1 <file> <args> ...
"""
OWN_USAGE = True
EXPECT = 0

Note: Using own usage strings in end-point commands is not recommended. It brings a lot of redundancy and
may prove problematic to modify while keeping consistency among hierarchically nested usages.

It’s more readable to put your usage strings in your command multiplexers and put each of them in its own
module.

See also:

Command multiplexers

Associating a function Influencing properties:

• CALLABLE (callable)

When command is invoked, its method execute() will get verified and transformed options as positional and
keyword arguments. This method shall pass them to an associated function residing in script library and return its
result on completion.

One way to associate a function is to use CALLABLE property. The other is to define very own execute() method
like this:

class Lister(command.LmiInstanceLister):
PROPERTIES = (’Name’, "Started", ’Status’)

14 Angle brackets here just mark the boundaries of name components. They have nothing to do with arguments.

56 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

def execute(self, ns, _all, _disabled, _oneshot):
kind = ’enabled’
if _all:

kind = ’all’
elif _disabled:

kind = ’disabled’
elif _oneshot:

kind = ’oneshot’
for service_inst in service.list_services(ns, kind):

yield service_inst

This may come handy if the application object 15 needs to be accessed or if we need to decide which function to call
based on command line options.

Property descriptions

CALLABLE [str (defaults to None)] This is a mandatory option if execute() method is not overriden. It may be
a string composed of a full path of module and its callable delimited with ’:’:

CALLABLE = ’lmi.scripts.service:start’

Causes function start() of ’lmi.scripts.service’ module to be associated with command.

Callable may also be assigned directly like this:

from lmi.scripts import service
class Start(command.LmiCheckResult):

CALLABLE = service.start
EXPECT = 0

The first variant (by assigning string) comes handy if the particular module of associated function is not yet
imported. Thus delaying the import until the point of function’s invocation - if the execution comes to this point
at all. In short it speeds up execution of LMI metacommand by reducing number of module imports that are not
needed.

Function invocation Influencing properties:

• NAMESPACE (namespace)

Property descriptions

NAMESPACE [str (defaults to None)] This property affects the first argument passed to an associated function.
Various values have different impact:

Value Value of first argument. Its type
None Same impact as value

"root/cimv2"
lmi.shell.LMINamespace.LMINamespace

False Raw connection object lmi.shell.LMIConnection.LMIConnection
any
path

Namespace object with given path lmi.shell.LMINamespace.LMINamespace

This usually won’t need any modification. Sometimes perhaps associated function might want to access more
than one namespace, in that case an instance of lmi.shell.LMIConnection.LMIConnection might
prove more useful.

Namespace can also be overriden globally in a configuration file or with an option on command line.

15 Application object is accessible through app property of each command instance.

3.1. OpenLMI client components 57

OpenLMI Documentation, Release latest

Output rendering All these options begin with FMT_ which is a shortcut for formatter as they become options to
formatter objects. These can be defined not only in end-point commands but also in multiplexers. In the latter case
they set the defaults for all their direct and indirect child commands.

Note: These options override configuration settings and command line options. Therefor use them with care.

They are:

FMT_NO_HEADINGS [bool (defaults to False)] Allows to suppress headings (column or row names) in the output.

Note: With LmiLister command it’s preferable to set the COLUMNS property to empty list instead. Otherwise
associated function is expected to return column headers as a first row in its result.

FMT_HUMAN_FRIENDLY [bool (defaults to False)] Forces the output to be more pleasant to read by human
beings.

Command specific properties Each command class can have its own specific properties. Let’s take a look on them.

LmiCommandMultiplexer

COMMANDS [dict (mandatory)] Dictionary assigning subcommands to their names listed in usage string. Example
follows:

class MyCommand(LmiCommandMultiplexer):
’’’
My command description.

Usage: %(cmd)s mycommand (subcmd1 | subcmd2)
’’’
COMMANDS = {’subcmd1’ : Subcmd1, ’subcmd2’ : Subcmd2}
OWN_USAGE = True

Where Subcmd1 and Subcmd2 are some other LmiBaseCommand subclasses. Documentation string must
be parseable with docopt.

COMMANDS property will be translated to child_commands() class method by
MultiplexerMetaClass.

FALLBACK_COMMAND [lmi.scripts.common.command.endpoint.LmiEndPointCommand] Com-
mand class used when no command defined in COMMANDS dictionary is passed on command line.

Take for example this usage string:

"""
Display hardware information.

Usage:
%(cmd)s [all]
%(cmd)s system
%(cmd)s chassis

"""

This suggests there are tree commands defined taking care of listing hardware informations. Entry point defini-
tion could look like this:

class Hardware(command.LmiCommandMultiplexer):
OWN_USAGE = __doc__ # usage string from above
COMMANDS = { ’all’ : All

58 Chapter 3. Table of Contents

http://docopt.org/

OpenLMI Documentation, Release latest

, ’system’ : System
, ’chassis’ : Chassis
}

FALLBACK_COMMAND = All

Without the FALLBACK_COMMAND property, the multiplexer would not handle the case when ’all’ argument
is omitted as is suggested in the usage string. Adding it to command properties causes this multiplexer to behave
exactly as All subcommand in case that no command is given on command line.

LmiSelectCommand properties Following properties allow to define profile and class requirements for com-
mands.

SELECT [list (mandatory)] Is a list of pairs (condition, command) where condition is an expression in
LMIReSpL language. And command is either a string with absolute path to command that shall be loaded or
the command class itself.

Small example:

SELECT = [
(’OpenLMI-Hardware < 0.4.2’
, ’lmi.scripts.hardware.pre042.PreCmd’
)

, (’OpenLMI-Hardware >= 0.4.2 & class LMI_Chassis == 0.3.0’
, HwCmd
)

]

It says: Let the PreHwCmd command do the job on brokers having openlmi-hardware package older
than 0.4.2. Use the HwCmd anywhere else where also the LMI_Chassis CIM class in version 0.3.0 is
available.

First matching condition wins and assigned command will be passed all the arguments. If no condition can be
satisfied and no default command is set, an exception will be raised.

See also:

Definition of LMIReSpL mini-language: parser

DEFAULT [string or reference to command class] Defines fallback command used in case no condition in SELECT
can be satisfied.

LmiLister properties

COLUMNS [tuple] Column names. It’s a tuple with name for each column. Each row of data shall then contain the
same number of items as this tuple. If omitted, associated function is expected to provide them in the first row
of returned list. It’s translated to get_columns() class method.

If set to empty list, no column headers will be printed. Every item of returned list of associated function will be
treated as data. Note that setting this to empty list makes the FMT_NO_HEADINGS property redundant.

LmiShowInstance and LmiInstanceLister properties These two classes expect, as a result of their asso-
ciated function, an instance or a list of instances of some CIM class. They take care of rendering them to standard
output. Thus their properties affect the way how their properties are rendered.

PROPERTIES [tuple] Property names in the same order as the properties shall be listed. Items of this tuple can
take multiple forms:

3.1. OpenLMI client components 59

OpenLMI Documentation, Release latest

Property Name [str] Will be used for the name of column/property in output table and the same name will
be used when obtaining the value from instance. Thus this form may be used only if the property name of
instance can appear as a name of column.

(Column Name, Property Name) [(str, str)] This pair allows to render value of property under different
name (Column Name).

(Column Name, getter) [(str, callable)] This way allows the value to be arbitrarily computed. The
second item is a callable taking one and only argument – the instance of class to be rendered.

Example below shows different ways of rendering attributes for instances of LMI_Service CIM class:

class Show(command.LmiShowInstance):
CALLABLE = ’lmi.scripts.service:get_instance’
PROPERTIES = (

’Name’,
(’Enabled’, lambda i: i.EnabledDefault == 2),
(’Active’, ’Started’))

First property will be shown with the same label as the name of property. Second one modifies the value
of EnabledDefault from int to bool representing enabled state. The last one uses different label for
property name Started.

DYNAMIC_PROPERTIES [bool (defaults to False)] Whether the associated function is expected to return the
properties tuple itself. If True, the result of associated function must be in form:

(properties, data)

Where properties have the same inscription and meaning as a PROPERTIES property of class.

Otherwise, only the data is expected.

Note: Both LmiShowInstance and LmiInstanceLister expect different data to be returned. See
LmiShowInstance and LmiInstanceLister for more information.

Note: Omitting both PROPERTIES and DYNAMIC_PROPERTIES makes the LmiShowInstance render all
attributes of instance. For LmiInstanceLister this is not allowed, either DYNAMIC_PROPERTIES must be
True or PROPERTIES must be filled.

LmiCheckResult properties This command typically does not produce any output if operation succeeds. The
operation succeeds if the result of associated function is expected. There are more ways how to say what is an expected
result. One way is to use EXPECT property. The other is to provide very own implementation of check_result
method.

EXPECT: (mandatory) Any value can be assigned to this property. This value is then expected to be returned by
associated function. Unexpected result is treated as an error.

A callable object assigned here has special meaning. This object must accept exactly two parameters:

1. options - Dictionary with parsed command line options returned by docopt after being processed by
transform_options().

2. result - Return value of associated function.

If the associated function does not return an expected result, an error such as:

There was 1 error:
host kvm-fedora-20

0 != 1

60 Chapter 3. Table of Contents

http://docopt.org/

OpenLMI Documentation, Release latest

will be presented to user which is not much helpful. To improve user experience, the check_result method
could be implemented instead. Note the example:

class Update(command.LmiCheckResult):
ARG_ARRAY_SUFFIX = ’_array’

def check_result(self, options, result):
"""
:param list result: List of packages successfuly installed

that were passed as an ‘‘<package_array>‘‘ arguments.
"""
if options[’<package_array>’] != result:

return (False, (’failed to update packages: %s’ %
", ".join(set(options[’<package_array>’])

- set(result))))
return True

The execute() method is not listed to make the listing shorter. This command could be used with usage
string such as:

%(cmd)s update [--force] [--repoid <repository>] <package> ...

In case of a failure, this would produce output like this one:

$ lmi sw update wt wt-doc unknownpackage
There was 1 error:
host kvm-fedora-20

failed to update packages: unknownpackage

See also:

Docopt home page and its git: http://github.org/docopt/docopt.

3.1.2 LMIShell

LMIShell provides a (non)interactive way how to access CIM objects provided by OpenPegasus or sblim-sfcb broker.
The shell is based on a python interpreter and added logic, therefore what you can do in pure python, it is possible in
LMIShell. There are classes added to manipulate with CIM classes, instance names, instances, etc. Additional classes
are added to fulfill wrapper pattern and expose only those methods, which are necessary for the purpose of a shell.

Short example:

$ lmishell
> c = connect(’localhost’, ’root’, ’password’)
> for proc in c.root.cimv2.LMI_Processor.instances():
... print "Name:\t%s, Clock Speed:\t%s" % (proc.Name, proc.MaxClockSpeed)
...
Name: QEMU Virtual CPU version 1.6.2, Clock Speed: 2000
Name: QEMU Virtual CPU version 1.6.2, Clock Speed: 2000

Startup

By running the following, you will gain an interactive interface of the shell. The LMIShell is waiting for the end of an
input to quit – by hitting <ctrl+d> you can exit from it:

3.1. OpenLMI client components 61

http://docopt.org/
http://github.org/docopt/docopt

OpenLMI Documentation, Release latest

$ lmishell
> <ctrl+d>
$

or:

$ lmishell
> quit()
$

Establish a connection

Following examples demonstrate, how to connect to a CIMOM by issuing a connect() call.

Username/Password authentication Common means of performing the authentication is done by providing a user-
name and password to connect() function. See the following example:

> c = connect("host", "username")
password: # <not echoed>
>

or:

> c = connect("host", "username", "password")
>

Unix socket LMIShell can connect directly to the CIMOM using Unix socket. For this type of connection,
the shell needs to be run under root user and the destination machine has to be either localhost, 127.0.0.1 or
::1. This type of connection is supported by TOG-Pegasus and there needs to be a Unix socket file present at
/var/run/tog-pegasus/cimxml.socket. If the condition is not met, classic username/password method
will be used.

See following example:

> c = connect("localhost")
>

Credentials validation Function connect() returns either LMIConnection object, if the connection can be
established, otherwise None is returned. Suppose, the LMIShell is run in verbose mode (-v, --verbose, -m or
--more-verbose is used). See following example of creating a connection:

> # correct username or password
> c = connect("host", "username", "password")
INFO: Connected to host
> isinstance(c, LMIConnection)
True
> # wrong login username or password
> c = connect("host", "wrong_username", "wrong_password")
ERROR: Error connecting to host, <error message>
> c is None
True
>

NOTE: By default, LMIShell prints out only error messages, when calling a connect(); no INFO messages will
be print out. It is possible to suppress all the messages by passing -q or --quiet).

62 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Server’s certificate validation

When using https transport protocol, LMIShell tries to validate each server-side certificate against platform provided
CA trust store. It is necessary to copy the server’s certificate from each CIMOM to the platform specific trust store
directory.

NOTE: It is possible to make LMIShell skip the certificate validation process by lmishell -n or --noverify.

See following example:

$ lmishell --noverify
>

Namespaces

Namespaces in CIM and LMIShell provide a natural way, how to organize all the available classes and their instances.
In the shell, they provide a hierarchic access point to other namespaces and corresponding classes.

The root namespace plays a special role in the managed system; it is the first entry point from the connection object
and provides the access to other clamped namespaces.

Available namespaces

To get a LMINamespace object for the root namespace of the managed system, run following:

> root_namespace = c.root
>

To list all available namespace from the root one, run following code:

> c.root.print_namespaces()
...
> ns_lst = c.root.namespaces
>

If you want to access any namespace deeper (e.g. cimv2), run this:

> cimv2_namespace = c.root.cimv2
> cimv2_namespace = c.get_namespace("root/cimv2")
>

Available classes

Each namespace object can print its available classes. To print/get the list of the classes, run this:

> c.root.cimv2.print_classes()
...
> classes_lst = c.root.cimv2.classes()
>

Queries

Using a LMINamespace object, it is possible to retrieve a list of LMIInstance objects. The LMIShell supports 2
query languages:

3.1. OpenLMI client components 63

OpenLMI Documentation, Release latest

• WQL

• CQL

Following code illustrates, how to execute WQL and CQL queries:

> instances_lst = namespace.wql("query")
> instances_lst = namespace.cql("query")
>

Classes

Each LMIClass in LMIShell represents a class implemented by a certain provider. You can get a list of its properties,
methods, instances, instance names and ValueMap properties. It is also possible to print a documentation string, create
a new instance or new instance name.

Getting a class object

To get a class which is provided by a broker, you can do following:

> cls = c.root.cimv2.ClassName
>

Fetching a class

Objects of LMIClass use lazy fetching method, because some methods do not need the wbem.CIMClass object.

To manually fetch the wbem.CIMClass object, call following:

> cls.fetch()
>

The methods, which need the wbem.CIMClass object to be fetched from CIMOM, do this action automatically,
without the need of calling LMIClass.fetch() method by hand.

Class Methods

Following example illustrates, how to work with LMIClass methods:

> cls.print_methods()
...
> cls_method_lst = cls.methods()
>

Class Properties

To get a list of properties of a specific class, run following code:

> cls.print_properties()
...
> cls_property_lst = cls.properties()
>

64 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Instances

Following part described basic work flow with LMIInstance and LMIInstanceName objects.

Get Instances Using a class object, you can access its instances. You can easily get a list of (filtered) instances, or
the first one from the list. The filtering is uses input dictionary, if present, where the dictionary keys represent the
instance properties and the dictionary values represent your desired instance property values.

To get LMIInstance object, execute the following example:

> inst = cls.first_instance()
> inst_lst = cls.instances()
>

Get Instance Names The wbem.CIMInstanceName objects clearly identify wbem.CIMInstance objects.
LMIShell can retrieve LMIInstanceName objects, by calling following:

> inst_name = cls.first_instance_name()
> inst_names_lst = cls.instance_names()
>

Filtering Both methods LMIClass.instances() or LMIClass.instance_names() can filter returned
objects by their keys/values. The filtering is achieved by passing a dictionary of {property : value} to the
corresponding method. See following example:

> inst_lst = cls.instances({"FilterProperty" : FilterValue})
> inst_names_lst = cls.instance_names({"FilterProperty" : FilterValue})
>

New Instance Name LMIShell is able to create a new wrapped wbem.CIMInstanceName, if you know all the
primary keys of a remote object. This instance name object can be then used to retrieve the whole instance object.

See the next example:

> inst_name = cls({Property1 : Value1, Property2 : Value2, ...})
> inst = inst_name.to_instance()
>

Creating a new instance LMIShell is able to create an object of specific class, if the provider support this operation.

See the following example:

> cls.create_instance({"Property1" : Value1, "Property2" : Value2})
>

NOTE: Value can be a LMIInstance object, as well. LMIShell will auto-cast such object.

ValueMap Properties

A CIM class may contain ValueMap properties (aliases for constant values) in its MOF definition. These properties
contain constant values, which can be useful, when calling a method, or checking a returned value.

ValueMap properties are formed from 2 MOF properties of a class definition:

3.1. OpenLMI client components 65

OpenLMI Documentation, Release latest

• Values – list of string names of the “constant” values

• ValueMap – list of values

Get ValueMap properties To get a list of all available constants, their values, use the following code:

> cls.print_valuemap_properties()
...
> valuemap_properties = cls.valuemap_properties()
...
> cls.PropertyValues.print_values()
...
>

NOTE: The suffix “Values” provides a way, how to access ValueMap properties.

Get ValueMap property value Following example shows, how to retrieve a constant value:

> constant_value_names_lst = cls.PropertyValues.values()
> cls.PropertyValues.ConstantValueName
ConstantValue
> cls.PropertyValues.value("ConstantValueName")
ConstantValue
>

Get ValueMap property value name LMIShell can also return string representing constant value. See the following
code:

> cls.PropertyValue.value_name(ConstantValue)
’ConstantValueName’
>

Useful Properties

Following part describes few useful LMIClass properties.

Class Name Every class object can return a name of the CIM class, see following:

> cls.classname
ClassName
>

Namespace Every class belongs to certain namespace, to get a string containing the corresponding namespace for
each class, run following:

> cls.namespace
Namespace
>

Connection Object This property returns a connection object, which was used to retrieve the class (refer to Establish
a connection). See next example:

66 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

> cls.connection
LMIConnection(URI=’uri’, user=’user’...)
>

Wrapped Object This property returns a wrapped wbem object. See the example:

> instance.wrapped_object
CIMClass(u’ClassName’, ...)
>

Documentation

To see a class documentation (based on MOF definitions), run:

> cls.doc()
... pretty verbose output displayed in a pages (can be modified by
setting environment variable PAGER) ...
>

Instances

Each LMIInstance in LMIShell represents a CIM instance provided by a certain provider.

Operations that can be performed within a LMIInstance:

• get and set properties

• list/print/execute its methods

• print a documentation string

• get a list of associated objects

• get a list of association objects

• push (update) a modified object to CIMOM

• delete a single instance from the CIMOM.

Instance Methods

To get a list of methods, run following:

> instance.print_methods()
...
> method_lst = instance.methods()
>

To execute a method within an object, run this:

> instance.Method(
... {"Param1" : value1,
... "Param2" : value2, ...})
LMIReturnValue(

rval=ReturnValue,
rparams=ReturnParametersDictionary,
errorstr="Possible error string"

3.1. OpenLMI client components 67

OpenLMI Documentation, Release latest

)
>

NOTE: Instances do not auto-refresh after a method calls. It is necessary to perform this operation by hand (See
Instance refreshing).

To get the result from a method call, see following:

> rval, rparams, errorstr = instance.Method(
... {"Param1" : value1,
... "Param2" : value2, ...})
>

The tuple in the previous example will contain return value of the method call (rval), returned parameters
(rparams) and possible error string (errorstr).

Synchronous methods LMIShell can perform synchronous method call, which means, that the LMIShell is able to
synchronously wait for a Job object to change its state to Finished state and then return the job’s return parameters.

Most of the implemented methods in OpenLMI providers are asynchronous methods, which means that user can
execute such method and do other desired actions while waiting for the result(s).

LMIShell can perform the synchronous method call, if the given method returns a object of following classes:

• LMI_SELinuxJob

• LMI_StorageJob

• LMI_SoftwareInstallationJob

• LMI_SoftwareVerificationJob

• LMI_NetworkJob

LMIShell first tries to use indications as the waiting method. If it fails, then it uses polling method instead.

Following example illustrates, how to perform a synchronous method call:

> rval, rparams, errorstr = instance.SyncMethod(
... {"Param1" : value1,
... "Param2" : value2, ...})
>

NOTE: See the prefix Sync of a method name.

When a synchronous method call is done:

• rval will contain the job’s return value

• rparams will contain the job’s return parameters

• errorstr will contain job’s possible error string

It is possible to force LMIShell to use only polling method, see the next example:

> rval, rparams, errorstr = instance.SyncMethod(
... {"Param1" : value1,
... "Param2" : value2, ...},
... PreferPolling=True)
>

68 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Signal handling LMIShell can properly handle SIGINT and SIGTERM, which instruct the shell to cancel the syn-
chronous call. When such signal is received, the background job, for which the LMIShell is waiting, will be asked to
terminate, as well.

Instance Properties

To get a list of properties, see following:

> instance.print_properties()
...
> instance_prop_lst = instance.properties()
>

It is possible to access an instance object properties. To get a property, see the following example:

> instance.Property
PropertyValue
>

To modify a property, execute following:

> instance.Property = NewPropertyValue
> instance.push()
LMIReturnValue(rval=0, rparams={}, errorstr="")
>

NOTE: If you change an instance object property, you have to execute a LMIInstance.push() method to prop-
agate the change to the CIMOM.

ValueMap Parameters

A CIM Method may contain ValueMap parameters (aliases for constant values) in its MOF definition.

To access these parameters, which contain constant values, see following code:

> instance.Method.print_valuemap_parameters()
...
> valuemap_parameters = instance.Method.valuemap_parameters()
>

Get ValueMap parameter value By using a ValueMap parameters, you can retrieve a constant value defined in the
MOF file for a specific method.

To get a list of all available constants, their values, use the following code:

> instance.Method.ParameterValues.print_values()
...
>

NOTE: The suffix Values provides a way, how to access ValueMap parameters.

To retrieve a constant value, see the next example:

> constant_value_names_lst = instance.Method.ParameterValues.values()
> instance.Method.ParameterValues.ConstantValueName
ConstantValue
> instance.Method.ParameterValues.value("ConstantValueName")

3.1. OpenLMI client components 69

OpenLMI Documentation, Release latest

ConstantValue
>

Get ValueMap parameter Method can also contain a mapping between constant property name and corresponding
value. Following code demonstrates, how to access such parameters:

> instance.Method.ConstantValueName
>

Get ValueMap parameter value name LMIShell can also return string representing constant value. See the fol-
lowing code:

> instance.Method.ParameterValue.value_name(ConstantValue)
ConstantValueName
>

Instance refreshing

Local objects used by LMIShell, which represent CIM objects at CIMOM side, can get outdated, if such object changes
while working with LMIShell’s one.

To update object’s properties, methods, etc. follow the next example:

> instance.refresh()
LMIReturnValue(rval=True, rparams={}, errorstr="")
>

Instance deletion

A single instance can be removed from the CIMOM by executing:

> instance.delete()
True
>

NOTE: After executing the LMIInstance.delete() method, all the object properties, methods will become
inaccessible.

Deletion of the instance can be verified by:

> instance.is_deleted
True
>

Documentation

For an instance object, you can also use a documentation method, which will display verbose information of its
properties and values.

See next example:

70 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

> instance.doc()
... pretty verbose output displayed in a pages (can be modified by
setting environment variable PAGER) ...
>

MOF representation

An instance object can also print out its MOF representation. This can be achieved by running:

> instance.tomof()
... verbose output of the instance in MOF syntax ...
>

Useful Properties

Following part describes LMIInstance useful properties.

Class Name Each instance object provide a property, that returns its class name. To get a string of the class name,
run following:

> instance.classname
ClassName
>

Namespace Each instance object also provides a property, that returns a namespace name. To get a string of the
namespace name, run following:

> instance.namespace
Namespace
>

Path To retrieve a unique, wrapped, identification object for the instance, LMIInstanceName, execute following:

> instance.path
LMIInstanceName(classname="ClassName"...)
>

Connection Object This property returns a connection object, which was used to retrieve the instance (refer to
Establish a connection). See next example:

> instance.connection
LMIConnection(URI=’uri’, user=’user’...)
>

Wrapped Object This property returns a wrapped wbem object. See the example:

> instance.wrapped_object
CIMInstance(classname=u’ClassName’, ...)
>

3.1. OpenLMI client components 71

OpenLMI Documentation, Release latest

Instance Names

LMIInstanceName is a object, which holds a set of primary keys and their values. This type of object exactly
identifies an instance.

Key properties

To get a list of key properties, see following example:

> instance_name.print_key_properties()
...
> instance_name.key_properties()
...
> instance_name.SomeKeyProperty
...
>

Instance Names deletion

A single instance can be removed from the CIMOM by executing:

> instance_name.delete()
True
>

NOTE: After executing the LMIInstanceName.delete() method, all the object key properties, methods will
become inaccessible.

Deletion of the instance can be verified by:

> instance_name.is_deleted
True
>

Conversion to a LMIInstance

This type of object may be returned from a method call. Each instance name can be converted into the instance, see
next example:

> instance = instance_name.to_instance()
>

Useful Properties

Following part describes LMIInstanceName useful properties.

Class Name The property returns a string representation of the class name. See next example:

> instance_name.classname
ClassName
>

72 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Namespace The property returns a string representation of namesapce. See next example:

> instance_name.namespace
Namespace
>

Host Name This property returns a string representation of the host name, where the CIM instance is located.

> instance_name.hostname
Hostname
>

Connection Object This property returns a connection object, which was used to retrieve the instance name (refer
to Establish a connection). See next example:

> instance.connection
LMIConnection(URI=’uri’, user=’user’...)
>

Wrapped Object This property returns a wrapped wbem object. See the example:

> instance.wrapped_object
CIMInstanceName(classname=’ClassName’, keybindings=NocaseDict(...), host=’hostname’, namespace=’namespace’)
>

Associated Objects

An association from CIM perspective is a type of class that contains two or more references. Associations represent
relationships between two or more classes.

Associations are classes which establish a relationship between classes without affecting any of the related classes. In
other words, the addition of an association has no effect on any of the related classes.

Following text describes the means of retrieving associated objects within a given one.

Associated Instances

To get a list of associated LMIInstance objects with a given object, run following:

> associated_objects = instance.associators(
... AssocClass=cls,
... ResultClass=cls,
... ResultRole=role,
... IncludeQualifiers=include_qualifiers,
... IncludeClassOrigin=include_class_origin,
... PropertyList=property_lst)
> first_associated_object = instance.first_associator(
... AssocClass=cls,
... ResultClass=cls,
... ResultRole=role,
... IncludeQualifiers=include_qualifiers,
... IncludeClassOrigin=include_class_origin,
... PropertyList=property_lst))

3.1. OpenLMI client components 73

OpenLMI Documentation, Release latest

Associated Instance Names

To get a list of associated LMIInstanceName objects with a given object, run following:

> associated_object_names = instance.associator_names(
... AssocClass=cls,
... ResultClass=cls,
... Role=role,
... ResultRole=result_role)
> first_associated_object_name = instance.first_associator_name(
... AssocClass=cls,
... ResultClass=cls,
... Role=role,
... ResultRole=result_role)
>

Association Objects

CIM defines an association relationship between managed objects. Following text describes the means of retrieving
association objects within a given one. An association object is the object, which defines the relationship between two
other objects.

Association Instances

To get association LMIInstance objects that refer to a particular target object, run following:

> association_objects = instance.references(
... ResultClass=cls,
... Role=role,
... IncludeQualifiers=include_qualifiers,
... IncludeClassOrigin=include_class_origin,
... PropertyList=property_lst)
> first_association_object = instance.first_reference(
... ResultClass=cls,
... Role=role,
... IncludeQualifiers=include_qualifiers,
... IncludeClassOrigin=include_class_origin,
... PropertyList=property_lst)
>

Association Instance Names

To get a list of association LMIInstanceName objects, run following:

> association_object_names = instance.reference_names(
... ResultClass=cls,
... Role=role)
> first_association_object_name = instance.first_reference_name(
... ResultClass=cls,
... Role=role)
>

74 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Indications

From CIM point of view, an indication is the representation of the occurrence of an event. Indications are classes
so they can have properties and methods. Instances of an indication are transient and can not be obtained by using
CIM Operations, such as GetInstance() or EnumerateInstances(). Indications can only be received by
subscribing to them.

An indication subscription is performed by the creation of an CIM_IndicationSubscription association instance that
references an CIM_IndicationFilter (a filter) instance, and an CIM_IndicationHandler (a handler) instance. The filter
contains the query that selects an Indication class or classes. The size and complexity of the result delivered to the
destination is defined by the query.

LMIShell can perform an indication subscription, by which we can receive such event responses. The shell also
provides a mechanism for the indication reception.

Indication handler

When working with indications, the first step is to set up an indication handler. This is a routine that will be triggered
when the CIMOM sends us an indication for which we have subscribed (see below). It is important to set up the
handler first so that we can generate a unique registration name and avoid conflicts with other clients that may wish to
register for the same indication. The indication handler may be part of the same process that will initiate the provider
registration or it may be an independent script, but the unique registration name must be acquired first in either case.

The following example describes creating a handler and a listener for an indication:

> def handler(indication, arg1, arg2, **kwargs):
... """
... Indication handler.
...
... :param wbem.CIMInstance indication: exported wbem.CIMInstance
... :param arg1: ...
... :param arg2: ...
... ...
... """
... do_something_with(indication)
> listener = LMIIndicationListener(listening_address, listening_port, certfile, keyfile, trust_store)
> unique_name = listener.add_handler("indication-name-XXXXXXXX", handler, arg1, arg2, **kwargs)
> listener.start()
>

The first argument of the handler is a wbem.CIMInstance object; the exported indication. The other arguments are
handler-specific; Any number of arguments may be specified as necessary; those arguments must then be provided to
the LMIIndicationListener.add_handler() method of the listener. In the above example, the string used
in the LMIIndicationListener.add_handler() call is specified with, at least, eight “X” characters. Those
characters will be replaced by unique string, which is generated by the listeners to avoid a handler name clash. Use of
this uniqueness capability is not mandatory but is highly recommended. The substituted name is returned as the result
of the LMIIndicationListener.add_handler() method so it can be used later.

When all necessary handlers are registered, the listener can be started by calling
LMIIndicationListener.start().

When a secure connection is desired, LMIIndicationListener can be constructed with keyfile, certfile and
trust_store (paths to X509 certificate, private key in PEM format and trust store).

3.1. OpenLMI client components 75

OpenLMI Documentation, Release latest

Subscribing to an indication

Now, when the indication listener is up and running, the indication subscription can be done. The LMIShell is capable
of creating an indication subscription with the filter and handler objects in one single step.

Example of indication subscription with 3 mandatory arguments:

> c = connect("host", "privileged_user", "password")
> c.subscribe_indication(
... Name=unique_name,
... Query=’SELECT * FROM CIM_InstModification’,
... Destination="http://192.168.122.1:%d" % listening_port
...)
LMIReturnValue(rval=True, rparams={}, errorstr="")
>

NOTE: Make sure, that you an account which has write privileges in the root/interop namespace.

The indication subscription can created with an extensive list of arguments, where optional arguments can be specified:

• QueryLanguage: DMTF:CQL

• CreationNamespace: root/interop

• SubscriptionCreationClassName: CIM_IndicationSubscription

• FilterCreationClassName: CIM_IndicationFilter

• FilterSystemCreationClassName: CIM_ComputerSystem

• FilterSourceNamespace: root/cimv2

• HandlerCreationClassName: CIM_IndicationHandlerCIMXML

• HandlerSystemCreationClassName: CIM_ComputerSystem

> c = connect("host", "privileged_user", "password")
> c.subscribe_indication(
... QueryLanguage="WQL",
... Query=’SELECT * FROM CIM_InstModification’,
... Name=unique_name,
... CreationNamespace="root/interop",
... SubscriptionCreationClassName="CIM_IndicationSubscription",
... FilterCreationClassName="CIM_IndicationFilter",
... FilterSystemCreationClassName="CIM_ComputerSystem",
... FilterSourceNamespace="root/cimv2",
... HandlerCreationClassName="CIM_IndicationHandlerCIMXML",
... HandlerSystemCreationClassName="CIM_ComputerSystem",
... Destination="http://192.168.122.1:%d" % listening_port
...)
LMIReturnValue(rval=True, rparams={}, errorstr="")
>

In this state, we have a indication subscription created.

Auto-delete subscriptions By default all subscriptions created by LMIShell will be auto-deleted, when
the shell quits. To change this behavior, you can pass Permanent=True keyword parameter to
LMIConnection.subscribe_indication() call, which will prevent LMIShell from deleting the subscrip-
tion.

76 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Listing subscribed indications

To list all the subscribed indications, run following code:

> c.print_subscribed_indications()
...
> subscribed_ind_lst = c.subscribed_indications()
>

Unsubscribing from an indication

By default, the subscriptions created by the shell are auto-deleted, when the shell quits.

If you want to delete the subscriptions sooner, you can use the following methods:

To unsubscribe from a specific indication:

> c.unsubscribe_indication(unique_name)
LMIReturnValue(rval=True, rparams={}, errorstr="")

Or to unsubscribe from all indications:

> c.unsubscribe_all_indications()
>

Return Values

Method calls return an object, that represents a return value of the given method. This type of object can be converted
into python’s typical 3-item tuple and consists of 3 items:

• rval – return value

• rparams – return value parameters

• errorstr – error string, if any

Following example shows, how to use and convert LMIReturnValue object to tuple:

> return_value = instance.MethodCall()
> return_value.rval
0
> return_value.rparams
[]
> return_value.errorstr

> (rval, rparams, errorstr) = return_value
> rval
0
> rparams
[]
> errorstr

>

Interactive Interface

This section covers some features, that are present in the interactive interface or are related to the LMIShell.

3.1. OpenLMI client components 77

OpenLMI Documentation, Release latest

History

When using the interactive interface of the LMIShell, you can use up/down arrows to navigate in history of all the
commands you previously used.

Clearing the history If you want to clear the history, simply run:

> clear_history()
>

Reversed search The LMIShell can also search in the history of commands by hitting <ctrl+r> and typing the
command prefix (as your default shell does). See following:

(reverse-i-search)’connect’: c = connect("host", "username")

Exception handling

Exception handling by the shell can be turned off – since then, all the exceptions need to be handled by your code. By
default, LMIShell handles the exceptions and uses C-like return values (See section Return Values) To allow all the
exceptions to propagate to your code, run this:

> use_exceptions()
>

To turn exception handling by the shell back on, run this:

> use_exceptions(False)
>

Cache

The LMIShell’s connection objects use a temporary cache for storing CIM class names and CIM classes to save
network communication.

The cache can be cleared, see following example:

> c.clear_cache()
>

The cache can be also turned off, see next example:

> c.use_cache(False)
>

Tab-completion

Interactive interface also supports tab-completion for basic programming structures and also for CIM objects (such as
namespace, classes, methods and properties completion, etc).

Following code shows few examples:

78 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

> c = conn<tab>
> c = connect(

> lmi_service_class = c.root.c<tab>
> lmi_service_class = c.root.cimv2
> lmi_service_class = c.root.cimv2.lmi_ser<tab>
> lmi_service_class = c.root.cimv2.LMI_Service

> sshd_service = lmi_s<tab>
> sshd_service = lmi_service_class

> sshd_service.Stat<tab>
> sshd_service.Status

> sshd_service.Res<tab>
> sshd_service.RestartService(

> lmi_service_class.Req<tab>
> lmi_service_class.RequestedStateChangeValues
> lmi_service_class.RequestesStateChangeValues.Sh<tab>
> lmi_service_class.RequestedStateChangeValues.Shutdown
> # similar for method calls, as well
>

Builtin features

This section describes built-in features of the LMIShell.

Configuration file

The LMIShell has a tiny configuration file with location ~/.lmishellrc. In configuration file, you can set these
properties:

location of the history used by interactive mode
history_file = "~/.lmishell_history"
length of history file, -1 for unlimited
history_length = -1
default value for cache usage
use_cache = True
default value for exceptions
use_exceptions = False
default value for indication_cert_file
indication_cert_file = ""
default value for indication_key_file
indication_key_file = ""

NOTE: indication_cert_file and indication_key_file are used by Synchronous methods, if the given
method waits for an indication using LMIIndicationListener. Both configuration options may contain path to
X509 certificate and private key in PEM format, respectively. If the configuration options are not set, SSL connection
will not be used.

Inspecting a script

If you want to inspect a script after it has been interpreted by the LMIShell, run this:

3.1. OpenLMI client components 79

OpenLMI Documentation, Release latest

$ lmishell -i some_script.lmi
some stuff done
>

NOTE: Prefered extension of LMIShell’s scripts is .lmi.

LMI Is Instance

LMIShell is able to verify, if a LMIInstance or LMIInstanceName object passed to lmi_isinstance() is
a instance of LMIClass.

The function is similar to python’s isinstance():

> lmi_isinstance(inst, cls)
True/False
>

LMI Associators

LMIShell can speed up associated objects’ traversal by manual joining, instead of calling
LMIInstance.associators(). The call needs to get a list of association classes, for which the refer-
enced objects will be joined. The list must contain objects of LMIClass.

See following example:

> associators = lmi_associators(list_of_association_classes)
>

3.1.3 OpenLMI Tools API reference

This is a generated documentation from OpenLMI Tools sources.

Generated from version: 0.10.1

LMIShell API reference

This is a generated documentation from LMIShell‘s sources.

Generated from version: 0.10.1

LMIBaseObject

class lmi.shell.LMIBaseObject.LMIWrapperBaseObject(conn)
Base class for all LMI wrapper classes, such as LMINamespace, LMIClass, LMIInstanceName,
LMIInstance, LMIMethod.

Parameters conn (LMIConnection) – connection object

connection
Property returning LMIConnection object.

Returns connection object

Return type LMIConnection

80 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

LMICIMXMLClient

class lmi.shell.LMICIMXMLClient.LMICIMXMLClient(uri, username=’‘, password=’‘, ver-
ify_server_cert=True, key_file=None,
cert_file=None)

CIM-XML client.

Parameters

• uri (string) – URI of the CIMOM

• username (string) – account, under which, the CIM calls will be performed

• password (string) – user’s password

• verify_server_cert (bool) – indicates, whether a server side certificate needs to be verified,
if SSL used; default value is True

• key_file (string) – path to x509 key file; default value is None

• cert_file (string) – path to x509 cert file; default value is None

call_method(*args, **kwargs)
Executes a method within a given instance.

Parameters

• instance – object, on which the method will be executed. The object needs to be instance
of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• method (string) – string containing a method name

• params (dictionary) – parameters passed to the method call

Returns LMIReturnValue object with rval set to return value of the method call, rparams set
to returned parameters from the method call, if no error occurs; otherwise rval is set to -1 and
errorstr to appropriate error string

Raises CIMError, ConnectionError, TypeError

connect(*args, **kwargs)
Connects to CIMOM.

NOTE: Applicable only wbem lmiwbem is used.

create_instance(*args, **kwargs)
Creates a new wbem.CIMInstance object.

Parameters

• classname (string) – class name of a new instance

• namespace (string) – namespace, of the new instance

• properties (dictionary) – property names and values

• qualifiers (dictionary) – qualifier names and values

• property_list (list) – list for property filtering; see wbem.CIMInstance

3.1. OpenLMI client components 81

OpenLMI Documentation, Release latest

Returns new wbem.CIMInstance, if no error occurs; otherwise None is returned

Raises CIMError, ConnectionError

delete_instance(*args, **kwargs)
Deletes a wbem.CIMInstance from the CIMOM side.

Parameters instance – object to be deleted. The object needs to be instance of following classes:

• wbem.CIMInstance

• wbem.CIMInstanceName

• LMIInstance

• LMIInstanceName

Returns LMIReturnValue object with rval set to True, if no error occurs; otherwise rval
is set to False and errorstr is set to corresponding error string

Raises CIMError, ConnectionError, TypeError

disconnect()
Disconnects from CIMOM.

NOTE: Applicable only wbem lmiwbem is used.

dummy()
Sends a “dummy” request to verify credentials.

Returns LMIReturnValue with rval set to True, if provided credentials are OK; False other-
wise. If LMIShell uses exceptions, CIMError or ConnectionError will be raised.

Raises CIMError, ConnectionError

exec_query(*args, **kwargs)
Executes a query and returns a list of wbem.CIMInstance objects.

Parameters

• query_lang (string) – query language

• query (string) – query to execute

• namespace (string) – target namespace for the query

Returns LMIReturnValue object with rval set to list of wbem.CIMInstance objects, if
no error occurs; otherwise rval is set to None and errorstr is set to corresponding error
string

Raises CIMError, ConnectionError

get_associator_names(*args, **kwargs)
Returns a list of associated wbem.CIMInstanceName objects with an input instance.

Parameters

• instance – for this object the list of associated wbem.CIMInstanceName will be re-
turned. The object needs to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

82 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of names by mandating that each returned name identify an object that shall be associ-
ated to the source object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of names
by mandating that each returned name identify an object that shall be either an instance of
this class (or one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the source object plays the specified role. That is,
the name of the property in the association class that refers to the source object shall match
the value of this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the named returned object plays the specified role.
That is, the name of the property in the association class that refers to the returned object
shall match the value of this parameter.

• limit (int) – unused

Returns list of associated wbem.CIMInstanceName objects with an input instance, if no
error occurs; otherwise an empty list is returned

Raises CIMError, ConnectionError, TypeError

get_associators(*args, **kwargs)
Returns a list of associated wbem.CIMInstance objects with an input instance.

Parameters

• instance – for this object the list of associated wbem.CIMInstance objects will be
returned. The object needs to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of objects by mandating that each returned object shall be associated to the source
object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be either an instance of this class (or
one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall be associated with the source object through an
association in which the source object plays the specified role. That is, the name of the
property in the association class that refers to the source object shall match the value of
this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of objects
by mandating that each returned object shall be associated to the source object through an
association in which the returned object plays the specified role. That is, the name of the
property in the association class that refers to the returned object shall match the value of
this parameter.

3.1. OpenLMI client components 83

OpenLMI Documentation, Release latest

• IncludeQualifiers (bool) – indicates, if all qualifiers for each object (including qualifiers
on the object and on any returned properties) shall be included as <QUALIFIER> ele-
ments in the response.

• IncludeClassOrigin (bool) – indicates, if the CLASSORIGIN attribute shall be present
on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the array define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If it is None, no additional filtering is defined.

• limit (int) – unused

Returns list of associated wbem.CIMInstance objects with an input instance, if no error
occurs; otherwise an empty list is returned

Raises CIMError, ConnectionError, TypeError

get_class(*args, **kwargs)
Returns a wbem.CIMClass object.

Parameters

• classname (string) – class name

• namespace (string) – – namespace name, from which the wbem.CIMClass should be
retrieved; if None, default namespace will be used (NOTE: see wbem)

• LocalOnly (bool) – indicates, if only local members should be present in the returned
wbem.CIMClass; any CIM elements (properties, methods, and qualifiers), except those
added or overridden in the class as specified in the classname input parameter, shall not be
included in the returned class.

• IncludeQualifiers (bool) – indicates, if qualifiers for the class (including qualifiers on the
class and on any returned properties, methods, or method parameters) shall be included in
the response.

• IncludeClassOrigin (bool) – indicates, if the CLASSORIGIN attribute shall be present
on all appropriate elements in the returned class.

• PropertyList (list) – if present and not None, the members of the list define one or more
property names. The returned class shall not include elements for properties missing from
this list. Note that if LocalOnly is specified as True, it acts as an additional filter on the
set of properties returned. For example, if property A is included in the PropertyList but
LocalOnly is set to True and A is not local to the requested class, it is not included in the
response. If the PropertyList input parameter is an empty list, no properties are included in
the response. If the PropertyList input parameter is None, no additional filtering is defined.

Returns LMIReturnValue object with rval set to wbem.CIMClass, if no error occurs; oth-
erwise rval is set to None and errorstr to appropriate error string

Raises CIMError, ConnectionError

get_class_names(*args, **kwargs)
Returns a list of class names.

Parameters

• namespace (string) – namespace, from which the class names list should be retrieved; if
None, default namespace will be used (NOTE: see wbem)

84 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• ClassName (string) – defines the class that is the basis for the enumeration. If the Class-
Name input parameter is absent, this implies that the names of all classes.

• DeepInheritance (bool) – if not present, of False, only the names of immediate child
subclasses are returned, otherwise the names of all subclasses of the specified class should
be returned.

Returns LMIReturnValue object with rval set to a list of strings containing class names,
if no error occurs; otherwise rval is set to None and errorstr contains an appropriate
error string

Raises CIMError, ConnectionError

get_instance(*args, **kwargs)
Returns a wbem.CIMInstance object.

Parameters

• path – path of the object, which is about to be retrieved. The object needs to be instance
of following classes:

– wbem.CIMInstanceName

– wbem.CIMInstance

– LMIInstanceName

– LMIInstance

• LocalOnly (bool) – indicates if to include the only elements (properties, methods, refer-
ences) overridden or defined in the class

• IncludeQualifiers (bool) – indicates, if all Qualifiers for the class and its elements shall
be included in the response

• IncludeClassOrigin (bool) – indicates, if the CLASSORIGIN attribute shall be present
on all appropriate elements in the returned class

• PropertyList (list) – if present and not None, the members of the list define one or more
property names. The returned class shall not include elements for properties missing from
this list. Note that if LocalOnly is specified as True, it acts as an additional filter on the
set of properties returned. For example, if property A is included in the PropertyList but
LocalOnly is set to True and A is not local to the requested class, it is not included in the
response. If the PropertyList input parameter is an empty list, no properties are included in
the response. If the PropertyList input parameter is None, no additional filtering is defined.

Returns LMIReturnValue object, where rval is set to wbem.CIMInstance object, if no
error occurs; otherwise rval is set to None and errorstr is set to corresponding error
string.

Raises CIMError, ConnectionError, TypeError

get_instance_names(*args, **kwargs)
Returns a list of wbem.CIMInstanceName objects.

Parameters

• classname (string) – class name

• namespace (string) – namespace name, where the instance names live

• inst_filter (dictionary) – dictionary containing filter values. The key corresponds to the
primary key of the wbem.CIMInstanceName; value contains the filtering value.

• limit (int) – unused

3.1. OpenLMI client components 85

OpenLMI Documentation, Release latest

• kwargs (dictionary) – supported keyword arguments (these are deprecated)

– Key or key (string) – filtering key, see above

– Value or value (string) – filtering value, see above

Returns LMIReturnValue object with rval contains a list of wbem.CIMInstanceName
objects, if no error occurs; otherwise rval is set to None and errorstr contains appro-
priate error string

Raises LMIFilterError, CIMError, ConnectionError

get_instances(*args, **kwargs)
Returns a list of wbem.CIMInstance objects.

Parameters

• classname (string) – class name

• namespace (string) – namespace, where the instances live

• inst_filter (dictionary) – dictionary containing filter values. The key corresponds to the
primary key of the wbem.CIMInstanceName; value contains the filtering value.

• client_filtering (bool) – if True, client-side filtering will be performed, otherwise the fil-
tering will be done by a CIMOM. Default value is False.

• limit (int) – unused

• kwargs (dictionary) – supported keyword arguments (these are deprecated)

– Key or key (string) – filtering key, see above

– Value or value (string) – filtering value, see above

Returns LMIReturnValue object with rval set to a list of wbem.CIMIntance objects, if
no error occurs; otherwise rval is set to None and errorstr is set to corresponding error
string.

Raises CIMError, ConnectionError

get_reference_names(*args, **kwargs)
Returns a list of association wbem.CIMInstanceName objects with an input instance.

Parameters

• instance – for this object the association wbem.CIMInstanceName objects will be
returned. The object needs to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of object
names by mandating that each returned Object Name identify an instance of this class (or
one of its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of object names by
mandating that each returned object name shall identify an object that refers to the target
instance through a property with a name that matches the value of this parameter.

• limit (int) – unused

86 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Returns list of association wbem.CIMInstanceName objects with an input instance, if no
error occurs; otherwise an empty list is returned

Raises CIMError, ConnectionError, TypeError

get_references(*args, **kwargs)
Returns a list of association wbem.CIMInstance objects with an input instance.

Parameters

• instance – for this object the list of association wbem.CIMInstance objects will be
returned. The object needs to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be an instance of this class (or one of
its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall refer to the target object through a property with
a name that matches the value of this parameter.

• IncludeQualifiers (bool) – bool flag indicating, if all qualifiers for each object (in-
cluding qualifiers on the object and on any returned properties) shall be included as
<QUALIFIER> elements in the response.

• IncludeClassOrigin (bool) – bool flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the list define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If PropertyList is None, no additional filtering is defined.

• limit (int) – unused

Returns list of association wbem.CIMInstance objects with an input instance, if no error
occurs; otherwise an empty list is returned

Raises CIMError, ConnectionError, TypeError

get_superclass(classname, namespace=None)
Returns a superclass to given class.

Parameters

• classname (string) – class name

• namespace (string) – namespace name

Returns superclass to given class, if such superclass exists, None otherwise

Raises CIMError, ConnectionError

hostname

Returns hostname of CIMOM

Return type string

3.1. OpenLMI client components 87

OpenLMI Documentation, Release latest

modify_instance(*args, **kwargs)
Modifies a wbem.CIMInstance object at CIMOM side.

Parameters

• instance (wbem.CIMInstance) – object to be modified

• IncludeQualifiers (bool) – indicates, if the qualifiers are modified as specified in Modi-
fiedInstance.

• PropertyList (list) – if not None, the members of the list define one or more property
names. Only properties specified in the PropertyList are modified. Properties of the Mod-
ifiedInstance that are missing from the PropertyList are ignored. If the PropertyList is an
empty list, no properties are modified. If the PropertyList is None, the set of properties to
be modified consists of those of ModifiedInstance with values different from the current
values in the instance to be modified.

Returns LMIReturnValue object with rval set to 0, if no error occurs; otherwise rval is
set to -1 and errorstr is set to corresponding error string.

Raises CIMError, ConnectionError

uri

Returns URI of the CIMOM

Return type string

username

Returns user name as a part of provided credentials

Return type string

LMIClass

class lmi.shell.LMIClass.LMIClass(conn, namespace, classname)
LMI wrapper class representing wbem.CIMClass.

Parameters

• conn (LMIConnection) – connection object

• namespace (LMINamespace) – namespace object

• classname (string) – CIM class name

classname

Returns class name

Return type string

create_instance(self_wr, *args, **kwargs)
Creates a new wbem.CIMInstance at the server side and returns LMIReturnValue object containing
LMIInstance as a result.

Parameters

• properties (dictionary) – initial properties with corresponding values

• qualifiers (dictionary) – initial qualifiers

• property_list (list) – list of properties, which should be present in LMIInstance object

88 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Usage: See Creating a new instance.

doc(self_wr, *args, **kwargs)
Prints out pretty verbose message with documentation for the class. If the LMIShell is run in a interactive
mode, the output will be redirected to a pager set by environment variable PAGER. If there is not PAGER
set, less or more will be used as a fall-back.

fetch(*args, **kwargs)
Manually fetches a wrapped wbem.CIMClass object.

Parameters full_fetch (bool) – True, if wbem.CIMClass should include qualifiers and class
origin. Default value is False.

Raises CIMError, ConnectionError

Usage: See Fetching a class.

first_instance(inst_filter=None, client_filtering=False, **kwargs)
Returns the first LMIInstance of the corresponding class.

Parameters

• inst_filter (dictionary) – filter values, where the key corresponds to the key of
wbem.CIMInstance; value contains the filtering value.

• client_filtering (bool) – if True, client-side filtering will be performed, otherwise the fil-
tering will be done by a CIMOM. Default value is False.

• kwargs (dictionary) – deprecated keyword arguments

– Key or key – filtering key, see above

– Value or value – filtering value, see above

Returns first LMIInstance object

Usage: See Get Instances and Filtering.

first_instance_name(inst_filter=None, **kwargs)
Returns the first LMIInstanceName of the corresponding class.

Parameters

• inst_filter (dictionary) – filter values, where the key corresponds to the primary key of
wbem.CIMInstanceName; value contains the filtering value

• kwargs (dictionary) – deprecated keyword arguments

– Key or key (string) – filtering key, see above

– Value or value – filtering value, see above

Returns first LMIInstanceName object

Usage: See Get Instance Names and Filtering.

instance_names(self_wr, *args, **kwargs)
Returns a LMIReturnValue containing a list of LMIInstanceNames.

Parameters

• inst_filter (dictionary) – filter values. The key corresponds to the primary key of the
wbem.CIMInstanceName; value contains the filtering value

• kwargs (dictionary) – deprecated keyword arguments

– Key or key (string) – filtering key, see above

3.1. OpenLMI client components 89

OpenLMI Documentation, Release latest

– Value or value – filtering value, see above

Returns LMIReturnValue object with rval set to a list of LMIInstanceName objects

Usage: See Get Instance Names and Filtering.

instances(self_wr, *args, **kwargs)
Returns a list of objects of LMIInstance.

Parameters

• inst_filter (dictionary) – filter values, where the key corresponds to the key of
wbem.CIMInstance; value contains the filtering value

• client_filtering (bool) – if True, client-side filtering will be performed, otherwise the fil-
tering will be done by a CIMOM. Default value is False.

• kwargs (dictionary) – deprecated keyword arguments

– Key or key (string) – filtering key, see above

– Value or value – filtering value, see above

Returns list of LMIInstance objects

Usage: See Get Instances and Filtering.

is_fetched(full_fetch=False)
Returns True, if wbem.CIMClass has been fetched.

Parameters full_fetch (bool) – defines, if qualifiers are also included

methods(self_wr, *args, **kwargs)

Returns list of strings of wbem.CIMClass methods.

Usage: See Class Methods. Note: When caching is turned off, this method may consume some time.

namespace

Returns namespace name

Return type string

new_instance_name(keybindings)

Create new LMIInstanceName object by passing all the keys/values of the object.

Parameters keybindings (dictionary) – primary keys of instance name with corresponding val-
ues

Returns new LMIInstanceName object

Usage: See New Instance Name.

print_methods(self_wr, *args, **kwargs)
Prints out the list of wbem.CIMClass methods.

Usage: See Class Methods.

print_properties(self_wr, *args, **kwargs)
Prints out the list of wbem.CIMClass properties.

Usage: See Class Properties.

90 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

print_valuemap_properties(self_wr, *args, **kwargs)
Prints out the list of string of constant names.

Usage: Get ValueMap properties.

properties(self_wr, *args, **kwargs)

Returns list of strings of the wbem.CIMClass properties

Usage: See Class Properties.

valuemap_properties(self_wr, *args, **kwargs)

Returns list of strings of the constant names

Usage: Get ValueMap properties.

wrapped_object

Returns wrapped wbem.CIMClass object

LMICompleter

class lmi.shell.LMICompleter.LMICompleter(namespace=None)
This LMIShell completer, which is used in the interactive mode, provides tab-completion for user friendliness.

Parameters namespace (dictionary) – dictionary, where to perform a completion. If unspec-
ified, the default namespace where completions are performed is __main__ (technically,
__main__.__dict__).

attr_matches(text)

Parameters text (string) – expression to complete

Returns list of attributes of a given expression; if the expression is instance of LMI wrapper
class, its important properties/attributes/ methods/parameters will be added too

Return type list of strings

complete(text, state)

Parameters

• text (string) – string to be completed.

• state – order number of the completion, see rlcompleter

Returns completed string

global_matches(text)

Parameters text (string) – expression to complete

Returns list of all keywords, built-in functions and names

Return type list of strings

LMIConnection

class lmi.shell.LMIConnection.LMIConnection(uri, username=’‘, password=’‘, interac-
tive=False, use_cache=True, key_file=None,
cert_file=None, verify_server_cert=True)

Class representing a connection object. Each desired connection to separate CIMOM should have its own con-

3.1. OpenLMI client components 91

OpenLMI Documentation, Release latest

nection object created. This class provides an entry point to the namespace/classes/instances/methods hierarchy
present in the LMIShell.

Parameters

• uri (string) – URI of the CIMOM

• username (string) – account, under which, the CIM calls will be performed

• password (string) – user’s password

• interactive (bool) – flag indicating, if the LMIShell client is running in the interactive mode;
default value is False.

• use_cache (bool) – flag indicating, if the LMIShell client should use cache for CIMClass
objects. This saves lot’s of communication, if there are EnumerateInstances() and
EnumerateClasses() intrinsic methods often issued. Default value is True.

• key_file (string) – path to x509 key file; default value is None

• cert_file (string) – path to x509 cert file; default value is None

• verify_server_cert (bool) – flag indicating, whether a server side certificate needs to be
verified, if SSL used; default value is True

NOTE: If interactive is set to True, LMIShell will:

•prompt for username and password, if missing and connection via Unix socket can not be established.

•use pager for the output of: LMIInstance.doc(), LMIClass.doc(), LMIInstance.tomof()
and LMIMethod.tomof()

clear_cache()
Clears the cache.

client

Returns CIMOM client

Return type LMICIMXMLClient or LMIWSMANClient

connect()
Connects to CIMOM and verifies credentials by performing a “dummy” request.

Returns LMIReturnValue object with rval set to True, if the user was properly authenticated;
False otherwise. In case of any error, rval is set to False and errorstr contains appropriate error
string.

Return type LMIReturnValue

disconnect()
Disconnects from CIMOM.

get_namespace(namespace)

Parameters namespace (string) – namespace path (eg. root/cimv2)

Returns LMINamespace object

Raises LMINamespaceNotFound

hostname

Returns hostname of CIMOM

Return type string

92 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

is_wsman()
Returns True, if the connection is made with WSMAN CIMOM; False otherwise.

namespaces

Returns list of all available namespaces

Usage: Available namespaces.

print_namespaces()
Prints out all available namespaces.

print_subscribed_indications()
Prints out all the subscribed indications.

root

Returns LMINamespaceRoot object for root namespace

subscribe_indication(**kwargs)
Subscribes to an indication. Indication is formed by 3 objects, where 2 of them (filter and handler) can be
provided, if the LMIShell should not create those 2 by itself.

NOTE: Currently the call registers atexit hook, which auto-deletes all subscribed indications by the
LMIShell.

Parameters kwargs (dictionary) – parameters for the indication subscription

• Filter (LMIInstance) – if provided, the LMIInstance object will be used instead of
creating a new one; optional

• Handler (LMIInstance) – if provided, the LMIInstance object will be used instead of
creating a new one; optional

• Query (string) – string containing a query for the indications filtering

• QueryLanguage (string) – query language; eg. WQL, or DMTF:CQL. This parameter is
optional, default value is DMTF:CQL.

• Name (string) – indication name

• CreationNamespace (string) – creation namespace. This parameter is optional, default
value is root/interop.

• SubscriptionCreationClassName (string) – subscription object class name. This param-
eter is optional, default value is CIM_IndicationSubscription.

• Permanent (bool) – whether to preserve the created subscription on LMIShell’s quit. De-
fault value is False.

• FilterCreationClassName (string) – creation class name of the filter object. This param-
eter is options, default value is CIM_IndicationFilter.

• FilterSystemCreationClassName (string) – system creation class name of the filter ob-
ject. This parameter is optional, default value is CIM_ComputerSystem.

• FilterSourceNamespace (string) – local namespace where the indications originate. This
parameter is optional, default value is root/cimv2.

• HandlerCreationClassName (string) – creation class name of the handler object. This
parameter is optional, default value is CIM_IndicationHandlerCIMXML.

• HandlerSystemCreationClassName (string) – system creation name of the handler ob-
ject. This parameter is optional, default value is CIM_ComputerSystem.

• Destination (string) – destination URI, where the indications should be delivered

3.1. OpenLMI client components 93

OpenLMI Documentation, Release latest

Returns LMIReturnValue object with rval set to True, if indication was subscribed; False
otherwise. If a error occurs, errorstr is set to appropriate error string.

subscribed_indications()

Returns list of all the subscribed indications

timeout

Returns CIMOM connection timeout for a transaction (milliseconds)

Return type int

unsubscribe_all_indications()
Unsubscribes all the indications. This call ignores Permanent flag, which may be provided in
LMIConnection.subscribe_indication(), and deletes all the subscribed indications.

unsubscribe_indication(name)
Unsubscribes an indication.

Parameters name (string) – indication name

Returns LMIReturnValue object with rval set to True, if unsubscribed; False otherwise

uri

Returns URI of the CIMOM

Return type string

use_cache(active=True)
Sets a bool flag, which defines, if the LMIShell should use a cache.

Parameters active (bool) – whether the LMIShell’s cache should be used

lmi.shell.LMIConnection.connect(uri, username=’‘, password=’‘, interactive=False,
use_cache=True, key_file=None, cert_file=None, ver-
ify_server_cert=True, prompt_prefix=’‘)

Creates a connection object with provided URI and credentials.

Parameters

• uri (string) – URI of the CIMOM

• username (string) – account, under which, the CIM calls will be performed

• password (string) – user’s password

• interactive (bool) – flag indicating, if the LMIShell client is running in the interactive mode;
default value is False.

• use_cache (bool) – flag indicating, if the LMIShell client should use cache for
wbem.CIMClass objects. This saves lot’s of communication, if there are
EnumerateInstances() and EnumerateClasses() intrinsic methods often is-
sued. Default value is True.

• key_file (string) – path to x509 key file; default value is None

• cert_file (string) – path to x509 cert file; default value is None

• verify_server_cert (bool) – flag indicating, whether a server side certificate needs to be
verified, if SSL used; default value is True.

• prompt_prefix (string) – username and password prompt prefix in case the user is asked for
credentials. Default value is empty string.

Returns LMIConnection object or None, if LMIShell does not use exceptions

94 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Raises ConnectionError

NOTE: If interactive is set to True, LMIShell will:

•prompt for username and password, if missing and connection via Unix socket can not be established.

•use pager for the output of: LMIInstance.doc(), LMIClass.doc(), LMIInstance.tomof()
and LMIMethod.tomof()

Usage: Establish a connection.

LMIConsole

class lmi.shell.LMIConsole.LMIConsole(cwd_first_in_path=False)
Class representing an interactive console.

clear_history()
Clears the current history.

interact(locals=None)
Starts the interactive mode.

Parameters locals (dictionary) – locals

interpret(script_name, script_argv, locals=None, interactive=False)
Interprets a specified script within additional provided locals. There are
LMIConsole.DEFAULT_LOCALS present.

Parameters

• script_name (string) – script name

• script_argv (list) – script CLI arguments

• locals (dictionary) – dictionary with locals

• interactive (bool) – tells LMIShell, if the script should be treated as if it was run in inter-
active mode

Returns exit code of the script

Return type int

load_history()
Loads the shell’s history from the history file.

save_history()
Saves current history of commands into the history file. If the length of history exceeds a maximum history
file length, the history will be truncated.

set_verify_server_certificate(verify_server_cert=True)
Turns on or off server side certificate verification, if SSL used.

Parameters verify_server_cert (bool) – – flag which tells, whether a server side certificate
needs to be verified, if SSL used

setup_completer()
Initializes tab-completer.

3.1. OpenLMI client components 95

OpenLMI Documentation, Release latest

LMIConstantValues

class lmi.shell.LMIConstantValues.LMIConstantValues(cim_obj, cast_type)
Abstract class for constant value objects.

Parameters

• cim_obj – this object is either of type wbem.CIMParameter, wbem.CIMProperty or
wbem.CIMMethod. Construction of this object requires to have a member _cast_type
to properly cast CIM object. When constructing derived objects, make sure, that the men-
tioned member is present before calling this constructor.

• cast_type – parameter/property cast type

print_values()
Prints all available constant names.

Usage: Get ValueMap properties.

value(value_name)

Parameters value_name (string) – constant name

Returns constant value

Usage: Get ValueMap property value.

value_name(value)

Parameters value (int) – numeric constant value

Returns constant value

Return type string

Usage: Get ValueMap property value name.

values()

Returns list of all available constant values

values_dict()

Returns dictionary of constants’ names and values

class lmi.shell.LMIConstantValues.LMIConstantValuesMethodReturnType(cim_method)
Derived class used for constant values of wbem.CIMMethod.

Parameters cim_method (CIMMethod) – wbem.CIMMethod object

class lmi.shell.LMIConstantValues.LMIConstantValuesParamProp(cim_property)
Derived class used for constant values of wbem.CIMProperty and wbem.CIMParameter.

Parameters cim_property – wbem.CIMProperty or wbem.CIMParameter object. Both ob-
jects have necessary member type which is needed for proper casting.

LMIDecorators

class lmi.shell.LMIDecorators.lmi_class_fetch_lazy(full_fetch=False)
Decorator for LMIClass, which first fetches a wrapped wbem.CIMClass object and then executes a wrapped
method.

Parameters full_fetch (bool) – True, if wbem.CIMClass should include qualifiers and class ori-
gin. Default value is False.

96 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

class lmi.shell.LMIDecorators.lmi_instance_name_fetch_lazy(full_fetch=False)
Decorator for LMIInstanceName, which first fetches a wrapped wbem.CIMInstance object and then
executes a wrapped method.

Parameters full_fetch (bool) – True, if wbem.CIMClass should include qualifiers and class ori-
gin. Default value is False.

class lmi.shell.LMIDecorators.lmi_possibly_deleted(expr_ret, Self=False, *expr_ret_args,
**expr_ret_kwargs)

Decorator, which returns None, if provided test expression is True.

Parameters

• expr_ret – callable or return value used, if expr_test fails

• expr_ret_args – expr_ret position arguments

• expr_ret_kwargs – expr_ret keyword arguments

• Self (bool) – flag, which specifies, if to pass self variable to the expr_ret, if
expr_test failed

Example of usage:

class Foo:
def __init__(self, deleted):

self._deleted = deleted

@lmi_possibly_deleted(lambda obj: obj._member, lambda: False)
def some_method(self):

print "some_method called"
return True

f = Foo(None)
f.some_method() == False

f = Foo(True)
f.some_method() == True

class lmi.shell.LMIDecorators.lmi_process_cim_exceptions(rval=None, er-
ror_callable=<function
return_lmi_rval at
0x7f174a693050>)

Decorator used for CIM-XML exception processing.

Parameters

• rval – rval passed to LMIReturnValue.__init__()

• error_callable – callable used for processing wbem.CIMError and
ConnectionError

NOTE: callables need to take 2 arguments: return value and error string.

class lmi.shell.LMIDecorators.lmi_process_cim_exceptions_rval(rval=None)
Decorator used for CIM-XML exception processing.

Parameters rval – return value of a decorated method in case of exception

class lmi.shell.LMIDecorators.lmi_process_wsman_exceptions(rval=None, er-
ror_callable=<function
return_lmi_rval at
0x7f174a693050>)

Decorator used for wsman exception processing.

3.1. OpenLMI client components 97

OpenLMI Documentation, Release latest

Parameters

• rval – rval passed to LMIReturnValue.__init__()

• error_callable – callable used for processing wbem.CIMError and
ConnectionError

NOTE: callables need to take 2 arguments: return value and error string.

class lmi.shell.LMIDecorators.lmi_process_wsman_exceptions_rval(rval=None)
Decorator used for wsman exception processing.

Parameters rval – return value of a decorated method in case of exception

class lmi.shell.LMIDecorators.lmi_return_expr_if_fail(expr_test, expr_ret,
Self=False, *expr_ret_args,
**expr_ret_kwargs)

Decorator, which calls a specified expression and returns its return value instead of calling the decorated method,
if provided test expression is False; otherwise a method is called.

Parameters

• expr_test – expression which determines, if to execute a return value expression

• expr_ret – expression, which is called, if the expr_test returns False

• expr_ret_args – expr_ret position arguments

• expr_ret_kwargs – expr_ret keyword arguments

• Self (bool) – flag, which specifies, if to pass self variable to the expr_ret, if
expr_test failed

Example of usage:

class Foo:
def __init__(self, member):

self._member = member

def failed(self):
print "expression failed"
return False

NOTE: the self parameter to the method call needs to be passed
via expr_ret_args, therefore, there is a dummy lambda obj: obj,
which is basically self variable.
@lmi_return_expr_if_fail(lambda obj: obj._member, failed,

lambda obj: obj)
def some_method(self):

print "some_method called"
return True

f = Foo(None)
f.some_method() == False

f = Foo(True)
f.some_method() == True

class lmi.shell.LMIDecorators.lmi_return_if_fail(expr_test)
Decorator, which returns None and no method call is performed, if provided test expression is False; otherwise
a method is called.

Parameters expr_test – if the expression expr_test returns True, a method is called

98 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Example of usage:

class Foo:
def __init__(self, member):

self._member = member

@lmi_return_if_fail(lambda obj: obj._member)
def some_method(self):

print "some_method called"
return True

f = Foo(None)
f.some_method() == None

f = Foo(True)
f.some_method() == True

class lmi.shell.LMIDecorators.lmi_return_val_if_fail(expr_test, rval)
Decorator, which returns a specified value and no method call is performed, if provided test expression is False;
otherwise a method is called.

Parameters

• expr_test – if the expression returns False, a method call is called

• rval – return value of the method, if the object attribute as expression failed

Example of usage:

class Foo:
def __init__(self, member):

self._member = member

@lmi_return_val_if_fail(lambda obj: obj._member, False)
def some_method(self):

print "some_method called"
return True

f = Foo(None)
f.some_method() == False

f = Foo(True)
f.some_method() == True

LMIExceptions

exception lmi.shell.LMIExceptions.CIMError(*args)
LMIShell’s exception for CIM errors.

exception lmi.shell.LMIExceptions.ConnectionError(*args)
LMIShell’s exception for Connection errors.

exception lmi.shell.LMIExceptions.LMIClassNotFound(namespace, class_name)
Raised, when trying to access missing class in LMINamespace.

Parameters

• namespace (string) – namespace name

• classname (string) – class name, which was not found in namespace

3.1. OpenLMI client components 99

OpenLMI Documentation, Release latest

exception lmi.shell.LMIExceptions.LMIDeletedObjectError
Raised, when there is an attempt to access properties on deleted LMIInstance object.

exception lmi.shell.LMIExceptions.LMIFilterError
Raised, when a filter error occurs, mostly when filter object is missing.

exception lmi.shell.LMIExceptions.LMIHandlerNamePatternError
Raised when the pattern string does not contain minimum replaceable characters.

exception lmi.shell.LMIExceptions.LMIIndicationError
Raised, if an error occurs while subscribing to/removing an indication.

exception lmi.shell.LMIExceptions.LMIIndicationListenerError
Raised, if there is an error while starting/stopping indication listener.

exception lmi.shell.LMIExceptions.LMIMethodCallError
Raised, when an error occurs within method call.

exception lmi.shell.LMIExceptions.LMINamespaceNotFound(namespace, *args)
Raised, when trying to access not existing namespace from connection or namespace object.

Parameters

• namespace (string) – namespace which was not found

• args – other positional arguments

exception lmi.shell.LMIExceptions.LMINoPagerError
Raised, when there is no default pager like less or more.

exception lmi.shell.LMIExceptions.LMINotSupported
Raised, when non-WSMAN method is about to be called.

exception lmi.shell.LMIExceptions.LMISynchroMethodCallError
Raised, when an error occurs within synchronized method call.

exception lmi.shell.LMIExceptions.LMISynchroMethodCallFilterError
Raised, when the LMIShell can not find necessary static filter for synchronous method call.

exception lmi.shell.LMIExceptions.LMIUnknownParameterError
Raised, when there is a method call issued and unknown method parameter is provided.

exception lmi.shell.LMIExceptions.LMIUnknownPropertyError
Raised, when there is an attempt to create instance with unknown property provided.

LMIFormatter

class lmi.shell.LMIFormatter.LMIClassFormatter(cim_class)
Class formatter is used to print out wbem.CIMClass representation.

Parameters cim_class (CIMClass) – object to print out

format(indent=0, width=80, f=<open file ‘<stdout>’, mode ‘w’ at 0x7f174f95a150>)
Formats out wbem.CIMClass object.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

100 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

format_property(prop, indent, width, f)
Prints out a property of wbem.CIMClass.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

class lmi.shell.LMIFormatter.LMIFormatter
Abstract class for derived subclasses.

fancy_format(interactive)
Formats a block of text. If the LMIShell is running in interactive mode, pager will be used, otherwise the
output will be written to standard output.

Parameters interactive (bool) – defines, if to use pager

format(indent=0, width=80, f=<open file ‘<stdout>’, mode ‘w’ at 0x7f174f95a150>)
Formats a block of text and prints it to the output stream.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

class lmi.shell.LMIFormatter.LMIInstanceFormatter(cim_instance)
Instance formatter is used to print out wbem.CIMInstance representation.

Parameters cim_instance (CIMInstance) – object to print out

format(indent=0, width=80, f=<open file ‘<stdout>’, mode ‘w’ at 0x7f174f95a150>)
Prints out :py:class‘CIMInstance‘ object.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

format_property(prop, indent, width, f)
Prints out a property of wbem.CIMInstance.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

class lmi.shell.LMIFormatter.LMIMethodFormatter(cim_method)
Method formatter is used to print out wbem.CIMMethod representation.

format(indent=0, width=80, f=<open file ‘<stdout>’, mode ‘w’ at 0x7f174f95a150>)
Prints out :py:class‘CIMMethod‘ object.

Parameters

• indent (int) – number of spaces to indent the text block

3.1. OpenLMI client components 101

OpenLMI Documentation, Release latest

• width (int) – total text block width

• f – output stream

format_method(method, indent, width, f)
Prints out a method of wbem.CIMClass.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

format_parameter(param, indent, width, f)
Prints out a parameter of wbem.CIMMethod.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

format_qualifier(qualif, indent, width, f)
Prints out a parameter of wbem.CIMMethod.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

class lmi.shell.LMIFormatter.LMIMofFormatter(obj)
MOF formatter is used to print out MOF representation of a CIM object.

Parameters obj – object, which has tomof() method

format(indent=0, width=80, f=<open file ‘<stdout>’, mode ‘w’ at 0x7f174f95a150>)
Formats a MOF object and prints it to the output stream.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

class lmi.shell.LMIFormatter.LMITextFormatter(text)
Text formatter class. Used when printing a block of text to output stream.

Parameters text (string) – text to be formatted

format(indent=0, width=80, f=<open file ‘<stdout>’, mode ‘w’ at 0x7f174f95a150>, separator=True)
Formats a block of text and prints it to the output stream.

Parameters

• indent (int) – number of spaces to indent the text block

• width (int) – total text block width

• f – output stream

102 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• kwargs (dictionary) – supported keyword arguments

• separator (bool) – if True, there will be a new line appended after the formatted text;
default value is True

LMIHelper

class lmi.shell.LMIHelper.LMIHelper
LMI Helper class, which overrides python help.

LMIIndicationListener

class lmi.shell.LMIIndicationListener.LMIIndicationListener(hostname, port,
certfile=None,
keyfile=None,
trust_store=None)

Class representing indication listener, which provides a unified API for the server startup and shutdown and for
registering an indication handler.

Parameters

• hostname (str) – bind hostname

• port (int) – TCP port, where the server should listen for incoming messages

• certfile (str) – path to certificate file, if SSL used

• keyfile (str) – path to key file, if SSL used

• trust_store (str) – path to trust store

add_handler(handler_name_pattern, handler, *args, **kwargs)
Registers a handler into the indication listener. Returns a string, which is used for the indication recogni-
tion, when a message arrives.

Parameters

• handler_name_pattern (string) – string, which may contain set of “X” characters at the
end of the string. The “X” characters will be replaced by random characters and the whole
string will form a unique string.

• handler – callable, which will be executed, when a indication is received

• args (tuple) – positional arguments for the handler

• kwargs (dictionary) – keyword arguments for the handler

Returns handler unique name

Return type string

LMIInstanceName

class lmi.shell.LMIInstanceName.LMIInstanceName(conn, cim_instance_name)
LMI wrapper class representing wbem.CIMInstanceName.

Parameters

• conn (LMIConnection) – connection object

3.1. OpenLMI client components 103

OpenLMI Documentation, Release latest

• cim_instance_name (CIMInstanceName) – wrapped object

associator_names(self_wr, *args, **kwargs)
Returns a list of associated LMIInstanceName with this object.

Parameters

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of names by mandating that each returned name identify an object that shall be associ-
ated to the source object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of names
by mandating that each returned name identify an object that shall be either an instance of
this class (or one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the source object plays the specified role. That is,
the name of the property in the association class that refers to the source object shall match
the value of this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the named returned object plays the specified role.
That is, the name of the property in the association class that refers to the returned object
shall match the value of this parameter.

Returns list of associated LMIInstanceName objects

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Associated Instance Names.

associators(self_wr, *args, **kwargs)
Returns a list of associated LMIInstance objects with this instance.

Parameters

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of objects by mandating that each returned object shall be associated to the source
object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be either an instance of this class (or
one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall be associated with the source object through an
association in which the source object plays the specified role. That is, the name of the
property in the association class that refers to the source object shall match the value of
this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of objects
by mandating that each returned object shall be associated to the source object through an
association in which the returned object plays the specified role. That is, the name of the
property in the association class that refers to the returned object shall match the value of
this parameter.

104 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• IncludeQualifiers (bool) – bool flag indicating, if all qualifiers for each object (in-
cluding qualifiers on the object and on any returned properties) shall be included as
<QUALIFIER> elements in the response.

• IncludeClassOrigin (bool) – bool flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the array define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If it is None, no additional filtering is defined.

Returns list of associated LMIInstance objects

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Associated Instances.

classname

Returns class name

Return type string

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty string. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

copy()

Returns copy of itself

delete(self_wr, *args, **kwargs)
Deletes the instance defined by this object path from the CIMOM.

Returns True, if the instance is deleted; False otherwise

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return True. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Instance Names deletion.

first_associator(self_wr, *args, **kwargs)
Returns the first associated LMIInstance with this object.

Parameters

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of objects by mandating that each returned object shall be associated to the source
object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be either an instance of this class (or
one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall be associated with the source object through an

3.1. OpenLMI client components 105

OpenLMI Documentation, Release latest

association in which the source object plays the specified role. That is, the name of the
property in the association class that refers to the source object shall match the value of
this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of objects
by mandating that each returned object shall be associated to the source object through an
association in which the returned object plays the specified role. That is, the name of the
property in the association class that refers to the returned object shall match the value of
this parameter.

• IncludeQualifiers (bool) – bool flag indicating, if all qualifiers for each object (in-
cluding qualifiers on the object and on any returned properties) shall be included as
<QUALIFIER> elements in the response.

• IncludeClassOrigin (bool) – bool flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the array define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If it is None, no additional filtering is defined.

Returns first associated LMIInstance

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Associated Instances.

first_associator_name(self_wr, *args, **kwargs)
Returns the first associated LMIInstanceName with this object.

Parameters

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of names by mandating that each returned name identify an object that shall be associ-
ated to the source object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of names
by mandating that each returned name identify an object that shall be either an instance of
this class (or one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the source object plays the specified role. That is,
the name of the property in the association class that refers to the source object shall match
the value of this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the named returned object plays the specified role.
That is, the name of the property in the association class that refers to the returned object
shall match the value of this parameter.

Returns first associated LMIInstanceName object

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

106 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Usage: Associated Instance Names.

first_reference(self_wr, *args, **kwargs)
Returns the first association LMIInstance with this object.

Parameters

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be an instance of this class (or one of
its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall refer to the target object through a property with
a name that matches the value of this parameter.

• IncludeQualifiers (bool) – flag indicating, if all qualifiers for each object (including qual-
ifiers on the object and on any returned properties) shall be included as <QUALIFIER>
elements in the response.

• IncludeClassOrigin (bool) – flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the list define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If PropertyList is None, no additional filtering is defined.

Returns first association LMIInstance object

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Association Instances.

first_reference_name(self_wr, *args, **kwargs)
Returns the first association LMIInstanceName with this object.

Parameters

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of object
names by mandating that each returned Object Name identify an instance of this class (or
one of its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of object names by
mandating that each returned object name shall identify an object that refers to the target
instance through a property with a name that matches the value of this parameter.

Returns first association LMIInstanceName object

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Association Instance Names.

hostname

Returns host name

Return type string

Raises LMIDeletedObjectError

3.1. OpenLMI client components 107

OpenLMI Documentation, Release latest

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty string. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

is_deleted

Returns True, if the instance was deleted from the CIMOM; False otherwise

key_properties(self_wr, *args, **kwargs)

Returns list of strings of key properties

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Key properties.

key_properties_dict(self_wr, *args, **kwargs)

Returns dictionary with key properties and corresponding values

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty dictionary. If the shell uses exceptions, LMIDeletedObjectError will
be raised.

key_property_value(self_wr, *args, **kwargs)

Parameters prop_name (string) – key property name

Returns key property value

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

methods(self_wr, *args, **kwargs)
Returns a list of wbem.CIMInstance methods’ names.

Returns list of wbem.CIMInstance methods’ names

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Instance Methods.

namespace

Returns namespace name

Return type string

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty string. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

108 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

print_key_properties(self_wr, *args, **kwargs)
Prints out the list of key properties.

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Key properties.

print_methods(self_wr, *args, **kwargs)
Prints out the list of wbem.CIMInstance methods’ names.

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Instance Methods.

reference_names(self_wr, *args, **kwargs)
Returns a list of association LMIInstanceName objects with this object.

Parameters

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of object
names by mandating that each returned Object Name identify an instance of this class (or
one of its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of object names by
mandating that each returned object name shall identify an object that refers to the target
instance through a property with a name that matches the value of this parameter.

Returns list of association LMIInstanceName objects

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Association Instance Names.

references(self_wr, *args, **kwargs)
Returns a list of association LMIInstance objects with this object.

Parameters

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be an instance of this class (or one of
its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall refer to the target object through a property with
a name that matches the value of this parameter.

• IncludeQualifiers (bool) – flag indicating, if all qualifiers for each object (including qual-
ifiers on the object and on any returned properties) shall be included as <QUALIFIER>
elements in the response.

• IncludeClassOrigin (bool) – flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the list define one or more property
names. Each returned object shall not include elements for any properties missing from

3.1. OpenLMI client components 109

OpenLMI Documentation, Release latest

this list. If PropertyList is an empty list, no properties are included in each returned object.
If PropertyList is None, no additional filtering is defined.

Returns list of association LMIInstance objects

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Association Instances.

to_instance(self_wr, *args, **kwargs)
Creates a new LMIInstance object from LMIInstanceName.

Returns LMIInstance object if the object was retrieved successfully; None otherwise.

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Conversion to a LMIInstance.

wrapped_object

Returns wrapped wbem.CIMInstanceName object

Raises LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called, this method will not execute its
code and will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

LMIInstance

class lmi.shell.LMIInstance.LMIInstance(conn, lmi_class, cim_instance)
LMI wrapper class representing wbem.CIMInstance.

Parameters

• conn (LMIConnection) – connection object

• lmi_class (LMIClass) – wrapped creation class of the instance

• cim_instance (CIMInstance) – wrapped object

associator_names(self_wr, *args, **kwargs)
Returns a list of associated LMIInstanceName with this object.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of names by mandating that each returned name identify an object that shall be associ-
ated to the source object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of names
by mandating that each returned name identify an object that shall be either an instance of
this class (or one of its subclasses) or be this class (or one of its subclasses).

110 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• Role (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the source object plays the specified role. That is,
the name of the property in the association class that refers to the source object shall match
the value of this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the named returned object plays the specified role.
That is, the name of the property in the association class that refers to the returned object
shall match the value of this parameter.

Returns list of associated LMIInstanceName objects

Raises LMIDeletedObjectError

Usage: Associated Instance Names.

associators(self_wr, *args, **kwargs)
Returns a list of associated LMIInstance objects with this instance.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of objects by mandating that each returned object shall be associated to the source
object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be either an instance of this class (or
one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall be associated with the source object through an
association in which the source object plays the specified role. That is, the name of the
property in the association class that refers to the source object shall match the value of
this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of objects
by mandating that each returned object shall be associated to the source object through an
association in which the returned object plays the specified role. That is, the name of the
property in the association class that refers to the returned object shall match the value of
this parameter.

• IncludeQualifiers (bool) – bool flag indicating, if all qualifiers for each object (in-
cluding qualifiers on the object and on any returned properties) shall be included as
<QUALIFIER> elements in the response.

• IncludeClassOrigin (bool) – bool flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the array define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If it is None, no additional filtering is defined.

Returns list of associated LMIInstance objects

Raises LMIDeletedObjectError

3.1. OpenLMI client components 111

OpenLMI Documentation, Release latest

Usage: Associated Instances.

classname
Property returning a string of a class name.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty string. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Returns class name

Return type string

Raises LMIDeletedObjectError

copy()

Returns copy of itself

delete(self_wr, *args, **kwargs)
Deletes this instance from the CIMOM.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Returns True, if the instance is deleted; False otherwise

Raises LMIDeletedObjectError

Usage: Instance deletion.

doc(self_wr, *args, **kwargs)
Prints out pretty verbose message with documentation for the instance. If the LMIShell is run in a inter-
active mode, the output will be redirected to a pager set by environment variable PAGER. If there is not
PAGER set, less or more will be used as a fall-back.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Raises LMIDeletedObjectError

first_associator(self_wr, *args, **kwargs)
Returns the first associated LMIInstance with this object.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of objects by mandating that each returned object shall be associated to the source
object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be either an instance of this class (or
one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall be associated with the source object through an
association in which the source object plays the specified role. That is, the name of the
property in the association class that refers to the source object shall match the value of
this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of objects
by mandating that each returned object shall be associated to the source object through an
association in which the returned object plays the specified role. That is, the name of the

112 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

property in the association class that refers to the returned object shall match the value of
this parameter.

• IncludeQualifiers (bool) – bool flag indicating, if all qualifiers for each object (in-
cluding qualifiers on the object and on any returned properties) shall be included as
<QUALIFIER> elements in the response.

• IncludeClassOrigin (bool) – bool flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the array define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If it is None, no additional filtering is defined.

Returns first associated LMIInstance

Raises LMIDeletedObjectError

Usage: Associated Instances.

first_associator_name(self_wr, *args, **kwargs)
Returns the first associated LMIInstanceName with this object.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of names by mandating that each returned name identify an object that shall be associ-
ated to the source object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of names
by mandating that each returned name identify an object that shall be either an instance of
this class (or one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the source object plays the specified role. That is,
the name of the property in the association class that refers to the source object shall match
the value of this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the named returned object plays the specified role.
That is, the name of the property in the association class that refers to the returned object
shall match the value of this parameter.

Returns first associated LMIInstanceName object

Raises LMIDeletedObjectError

Usage: Associated Instance Names.

first_reference(self_wr, *args, **kwargs)
Returns the first association LMIInstance with this object.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters

3.1. OpenLMI client components 113

OpenLMI Documentation, Release latest

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be an instance of this class (or one of
its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall refer to the target object through a property with
a name that matches the value of this parameter.

• IncludeQualifiers (bool) – flag indicating, if all qualifiers for each object (including qual-
ifiers on the object and on any returned properties) shall be included as <QUALIFIER>
elements in the response.

• IncludeClassOrigin (bool) – flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the list define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If PropertyList is None, no additional filtering is defined.

Returns first association LMIInstance object

Raises LMIDeletedObjectError

Usage: Association Instances.

first_reference_name(self_wr, *args, **kwargs)
Returns the first association LMIInstanceName with this object.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of object
names by mandating that each returned Object Name identify an instance of this class (or
one of its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of object names by
mandating that each returned object name shall identify an object that refers to the target
instance through a property with a name that matches the value of this parameter.

Returns first association LMIInstanceName object

Raises LMIDeletedObjectError

Usage: Association Instance Names.

is_deleted

Returns True, if the instance was deleted from the CIMOM; False otherwise

methods(self_wr, *args, **kwargs)
Returns a list of wbem.CIMInstance methods’ names.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Returns list of wbem.CIMInstance methods’ names

Raises LMIDeletedObjectError

Usage: Instance Methods.

114 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

namespace
Property retuning a string of a namespace name.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty string. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Returns namespace name

Return type string

Raises LMIDeletedObjectError

path
Property returning a LMIInstanceName object.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Returns LMIInstanceName object

Raises LMIDeletedObjectError

print_methods(self_wr, *args, **kwargs)
Prints out the list of wbem.CIMInstance methods’ names.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Raises LMIDeletedObjectError

Usage: Instance Methods.

print_properties(self_wr, *args, **kwargs)
Prints out the list of wbem.CIMInstance properties.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Raises LMIDeletedObjectError

Usage: Instance Properties.

properties(self_wr, *args, **kwargs)
Returns a list of wbem.CIMInstance properties.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Returns list of wbem.CIMInstance properties

Return type list

Raises LMIDeletedObjectError

Usage: Instance Properties.

properties_dict(self_wr, *args, **kwargs)
Returns dictionary containing property name and value pairs. This method may consume significant mem-
ory amount when called.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty dictionary. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Returns dictionary of wbem.CIMInstance properties

Raises LMIDeletedObjectError

3.1. OpenLMI client components 115

OpenLMI Documentation, Release latest

property_value(self_wr, *args, **kwargs)
Returns a wbem.CIMInstance property value.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters prop_name (string) – wbem.CIMInstance property name

Raises LMIDeletedObjectError

push(self_wr, *args, **kwargs)
Pushes the modified object to the CIMOM.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return LMIReturnValue object containing False as a return value with proper error string set. If
the shell uses exceptions, LMIDeletedObjectError will be raised.

Returns LMIReturnValue object with rval set to True, if modified; False otherwise

Raises LMIDeletedObjectError

Usage: Instance Properties.

reference_names(self_wr, *args, **kwargs)
Returns a list of association LMIInstanceName objects with this object.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of object
names by mandating that each returned Object Name identify an instance of this class (or
one of its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of object names by
mandating that each returned object name shall identify an object that refers to the target
instance through a property with a name that matches the value of this parameter.

Returns list of association LMIInstanceName objects

Raises LMIDeletedObjectError

Usage: Association Instance Names.

references(self_wr, *args, **kwargs)
Returns a list of association LMIInstance objects with this object.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return an empty list. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Parameters

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be an instance of this class (or one of
its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall refer to the target object through a property with
a name that matches the value of this parameter.

• IncludeQualifiers (bool) – flag indicating, if all qualifiers for each object (including qual-
ifiers on the object and on any returned properties) shall be included as <QUALIFIER>
elements in the response.

116 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• IncludeClassOrigin (bool) – flag indicating, if the CLASSORIGIN attribute shall be
present on all appropriate elements in each returned object.

• PropertyList (list) – if not None, the members of the list define one or more property
names. Each returned object shall not include elements for any properties missing from
this list. If PropertyList is an empty list, no properties are included in each returned object.
If PropertyList is None, no additional filtering is defined.

Returns list of association LMIInstance objects

Raises LMIDeletedObjectError

Usage: Association Instances.

refresh(self_wr, *args, **kwargs)
Retrieves a new wbem.CIMInstance object. Basically refreshes the object properties. Returns
LMIReturnValue with rval set to 0, if the wrapped wbem.CIMInstance object was refreshed; oth-
erwise rval is set to -1.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return LMIReturnValue object containing -1 as a return value with proper error string set. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Returns LMIReturnValue object with rval set to 0, if refreshed; -1 otherwise

Raises LMIDeletedObjectError

Usage: Instance refreshing.

tomof(self_wr, *args, **kwargs)
Prints out a message with MOF representation of wbem.CIMMethod. If the LMIShell is run in a inter-
active mode, the output will be redirected to a pager set by environment variable PAGER. If there is not
PAGER set, less or more will be used as a fall-back.

NOTE: If the method LMIInstance.delete() was called, this method will not execute its code and
will return None. If the shell uses exceptions, LMIDeletedObjectError will be raised.

Raises LMIDeletedObjectError

wrapped_object

Returns wrapped wbem.CIMInstance object

LMIJob

lmi.shell.LMIJob.lmi_is_job_completed(job)
Helper function, which returns bool flag, if the job is in completed state.

Parameters job – LMIInstance or wbem.CIMInstance representing a job

lmi.shell.LMIJob.lmi_is_job_exception(job)
Helper function, which returns bool flag, if the job is in the exception state.

Parameters job – LMIInstance or wbem.CIMInstance representing a job

lmi.shell.LMIJob.lmi_is_job_finished(job)
Helper function, which returns bool flag, if the job is in finished state.

Parameters job – LMIInstance or wbem.CIMInstance representing a job

lmi.shell.LMIJob.lmi_is_job_killed(job)
Helper function, which returns bool flag, if the job is killed.

3.1. OpenLMI client components 117

OpenLMI Documentation, Release latest

Parameters job – LMIInstance or wbem.CIMInstance representing a job

lmi.shell.LMIJob.lmi_is_job_terminated(job)
Helper function, which returns bool flag, if the job is in terminated state.

Parameters job – LMIInstance or wbem.CIMInstance representing a job

LMIMethod

class lmi.shell.LMIMethod.LMIMethod(conn, lmi_instance, method_name)
LMI wrapper class representing wbem.CIMMethod.

Parameters

• conn (LMIConnection) – connection object

• lmi_instance (LMIInstance(Name)) – LMIInstance or LMIInstanceName object, on
which the method call will be issued

• method_name (string) – method name

doc()
Prints out pretty verbose message with documentation for the class. If the LMIShell is run in a interactive
mode, the output will be redirected to a pager set by environment variable PAGER. If there is not PAGER
set, less or more will be used as a fall-back.

parameters()

Returns list of strings of wbem.CIMMethod‘s parameters

print_parameters()
Prints out wbem.CIMMethod‘s parameters.

print_valuemap_parameters()
Prints out the list of strings of constant names.

return_type

Returns string of the method call’s return type

tomof()
Prints out a message with MOF representation of wbem.CIMMethod. If the LMIShell is run in a inter-
active mode, the output will be redirected to a pager set by environment variable PAGER. If there is not
PAGER set, less or more will be used as a fall-back.

valuemap_parameters()

Returns list of strings of the constant names

wrapped_object

Returns wrapped wbem.CIMmethod object

class lmi.shell.LMIMethod.LMIMethodSignalHelper
Helper class which takes care of signal (de)registration and handling.

callback_attach(cb_name, cb)
Registers a callback, which will be called when a SIGINT or SIGTERM is caught.

Parameters

• cb_name (string) – callback name

• cb – callable object, which takes zero arguments

118 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

callback_detach(cb_name)
Removes a callback from the callback dictionary.

Parameters cb_name (string) – callback name

signal_attach()
Registers SIGINT and SIGTERM signals to local handler in which, the flags for each signal are modified,
if such signal is caught.

signal_detach()
Unregisters SIGINT and SIGTERM handler and removes all the attached callbacks.

signal_handled()

Returns True, if any of SIGINT or SIGTERM has been caught; False otherwise

signal_handler(signo, frame)
Signal handler, which is called, when SIGINT and SIGTERM are sent to the LMIShell.

Parameters

• signo (int) – signal number

• frame – – stack frame

class lmi.shell.LMIMethod.LMISignalHelperBase
Base signal handling class.

static signal(signo, handler)
Calls signal() for signo, handler and returns the old signal handler. If signo is list of signals, the signal() call
is applied for each signo. If handler is also list, each signal from signo will be handled by corresponding
handler. In such case, tuple of previous handlers will be returned.

static signal_core(signo, handler)
Wrapper method for signal.signal(). In case of ValueError, it returns None, old signal handler otherwise.
If handler is None, default signal handler is set for such signal.

LMINamespace

class lmi.shell.LMINamespace.LMINamespace(conn, name)
LMI class representing CIM namespace.

Parameters

• conn (LMIConnection) – connection object

• name (string) – namespace name

classes()
Returns a list of class names.

Parameters

• filter_key (string) – substring of a class name

• exact_match (bool) – tells, if to search for exact match or substring

Returns list of class names

Usage: Available classes.

cql(query)
Executes a CQL query and returns a list of LMIInstance objects.

3.1. OpenLMI client components 119

OpenLMI Documentation, Release latest

Parameters query (string) – CQL query to execute

Returns LMIReturnValue object with rval set to a list of LMIInstance objects

Usage: Queries.

get_class(classname)
Returns LMIClass.

Parameters classname (string) – class name of new LMIClass

Raises LMIClassNotFound

name

Returns namespace name

Return type string

print_classes()
Prints out a list of classes.

Parameters

• filter_key (string) – substring of a class name

• exact_match (bool) – tells, if to search for exact match, or to search for a matching sub-
string

Usage: Available classes.

wql(query)
Executes a WQL query and returns a list of LMIInstance objects.

Parameters query (string) – WQL query to execute

Returns LMIReturnValue object with rval set to a list of LMIInstance objects

Usage: Queries.

class lmi.shell.LMINamespace.LMINamespaceRoot(conn)
Derived class for root namespace. Object of this class is accessible from LMIConnection object as a hierar-
chy entry.

Parameters conn (LMIConnection) – connection object

namespaces

Returns list of strings with available namespaces

Usage: Available namespaces.

print_namespaces()
Prints out all available namespaces accessible via the namespace root.

Usage: Available namespaces.

LMIObjectFactory

class lmi.shell.LMIObjectFactory.LMIObjectFactory
Object factory class. Used to avoid circular import dependencies between several LMI classes. The class
implements a singleton design pattern.

Example of usage:

120 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

LMIObjectFactory().register(SomeClass)
some_obj = LMIObjectFactory().SomeClass(*args, **kwargs)

register(reg_class)
Registers a class into the factory.

LMIReturnValue

class lmi.shell.LMIReturnValue.LMIReturnValue
Class representing a return value, which holds 3 main types of attributes:

Parameters

• rval – return value

• rparams (dictionary) – returned parameters of e.g. method call

• errorstr (string) – error string

LMIShellCache

class lmi.shell.LMIShellCache.LMIClassCacheEntry(cim_class, full_fetch)
Class used for storing wbem.CIMClass in LMIShellCache.

Parameters

• cim_class (CIMClass) – wbem.CIMClass to cache

• full_fetch (bool) – True, if class is cached with qualifiers

class lmi.shell.LMIShellCache.LMIShellCache(active=True, classname_dict=None,
class_dict=None, class_superclass_dict=None)

Class representing a LMIShell cache.

Parameters

• active (bool) – specifies, if the cache is active

• classname_list (list) – list of strings of cached class names

• class_dict (dictionary) – cached wbem.CIMClass objects, where the key is the class name
and value is CIMClass object

• class_superclass_dict (dictionary) – dictionary, where the key is namespace and value is
dictionary of classname:superclass

active

Returns True, if the cache is active; False otherwise

add_class(cim_class, namespace=’root/cimv2’, full_fetch=False)
Stores a new wbem.CIMClass object into the cache.

Parameters

• cim_class (CIMClass) – wbem.CIMClass object

• namespace (string) – namespace storing cached classes

add_superclass(classname, superclass, namespace)
Stores a new pair classname : superclassname into the cache.

Parameters

3.1. OpenLMI client components 121

OpenLMI Documentation, Release latest

• classname (string) – class name to be stored

• superclass (string) – super class name to be stored

• namespace (string) – namespace name of the classname

clear()
Clears the cache.

get_class(classname, namespace=’root/cimv2’)

Parameters

• classname (string) – cached class name

• namespace (string) – namespace storing cached classes

Returns cache object, if proper class name provided, None otherwise

Return type LMIClassCacheEntry

get_classes(namespace=’root/cimv2’)

Parameters namespace (string) – namespace storing cached classes

Returns list of cached class names or None, if no cached classes is stored

get_superclass(classname, namespace)

Parameters

• classname (string) – cached class name

• namespace (string) – namespace name

Returns cached superclass to the given class name

Return type string

has_superclass(classname, namespace)

Parameters

• classname (string) – cached class name

• namespace (string) – namespace name

Returns True, if the cache contains superclass to the given class name; False otherwise

set_classes(classname_list, namespace=’root/cimv2’)
Stores a new class names’ list.

Parameters namespace (string) – namespace storing cached classes

LMIShellClient

class lmi.shell.LMIShellClient.LMIShellClient(uri, username=’‘, password=’‘, interac-
tive=False, use_cache=True, key_file=None,
cert_file=None, verify_server_cert=True)

LMIShellClient overrides few methods due to caching purposes.

Parameters

• uri (string) – URI of the CIMOM

• username (string) – account, under which, the CIM calls will be performed

• password (string) – user’s password

122 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• interactive (bool) – flag indicating, if the LMIShell client is running in the interactive mode;
default value is False.

• use_cache (bool) – flag indicating, if the LMIShell client should use
cache for CIMClass objects. This saves a lot’s of communication,
if there is often the LMIShellClient.get_class_names() or
LMIShellClient.attr.get_class() call issued.

• key_file (string) – path to x509 key file; default value is None

• cert_file (string) – path to x509 cert file; default value is None

• verify_server_cert (bool) – indicates, whether a server side certificate needs to be verified,
if SSL used; default value is True

NOTE: If interactive is set to True, LMIShell will:

•prompt for username and password, if missing and connection via Unix socket can not be established.

•use pager for the output of: LMIInstance.doc(), LMIClass.doc(), LMIInstance.tomof()
and LMIMethod.tomof()

cache

Returns LMIShell’s cache

Return type LMIShellCache

get_class(classname, namespace=None, LocalOnly=True, IncludeQualifiers=True, IncludeClassO-
rigin=False, PropertyList=None, full_fetch=False)

Returns a wbem.CIMClass object.

Parameters

• classname (string) – class name

• namespace (string) – – namespace name, from which the wbem.CIMClass should be
retrieved; if None, default namespace will be used (NOTE: see wbem)

• LocalOnly (bool) – indicates, if only local members should be present in the returned
wbem.CIMClass; any CIM elements (properties, methods, and qualifiers), except those
added or overridden in the class as specified in the classname input parameter, shall not be
included in the returned class.

• IncludeQualifiers (bool) – indicates, if qualifiers for the class (including qualifiers on the
class and on any returned properties, methods, or method parameters) shall be included in
the response.

• IncludeClassOrigin (bool) – indicates, if the CLASSORIGIN attribute shall be present
on all appropriate elements in the returned class.

• PropertyList (list) – if present and not None, the members of the list define one or more
property names. The returned class shall not include elements for properties missing from
this list. Note that if LocalOnly is specified as True, it acts as an additional filter on the
set of properties returned. For example, if property A is included in the PropertyList but
LocalOnly is set to True and A is not local to the requested class, it is not included in the
response. If the PropertyList input parameter is an empty list, no properties are included in
the response. If the PropertyList input parameter is None, no additional filtering is defined.

Returns LMIReturnValue object with rval set to wbem.CIMClass, if no error occurs; oth-
erwise rval is set to none and errorstr to appropriate error string

Raises CIMError, ConnectionError

3.1. OpenLMI client components 123

OpenLMI Documentation, Release latest

get_class_names(namespace=None, ClassName=None, DeepInheritance=False)
Returns a list of class names.

Parameters

• namespace (string) – namespace, from which the class names list should be retrieved; if
None, default namespace will be used (NOTE: see wbem)

• ClassName (string) – defines the class that is the basis for the enumeration. If the Class-
Name input parameter is absent, this implies that the names of all classes.

• DeepInheritance (bool) – if not present, of False, only the names of immediate child
subclasses are returned, otherwise the names of all subclasses of the specified class should
be returned.

Returns LMIReturnValue object with rval set to a list of strings containing class names,
if no error occurs; otherwise rval is set to None and errorstr contains an appropriate
error string

Raises CIMError, ConnectionError

get_superclass(classname, namespace=None)
Returns string of a superclass to given class, if such superclass exists, None otherwise.

Parameters

• classname (string) – class name

• namespace (string) – namespace name

Returns superclass name to a given classname or None

Raises CIMError, ConnectionError

interactive

Returns flag, if the LMIShell is run in the interactive mode

Return type bool

use_cache

Returns flag, which tells, if the LMIShell should use a cache

Return type bool

LMIShellConfig

class lmi.shell.LMIShellConfig.LMIShellConfig
Class representing the shell’s configuration. The class is responsible for loading the configuration from the file
and provides a unified API to access these settings.

Constructs a LMIShellConfig object and loads the configuration from the file. If there is no such file, the
shell’s configuration properties are set to default values. Configuration file uses python syntax. If there is a
syntax error in the configuration file, the properties are set to default values, as well.

cert_file
Property returning a file name containing x509 certificate. This is used for LMIIndicationListener.

Returns x509 certificate file name

Return type string

124 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

history_file
Property returning a string containing the shell’s history file.

Returns history file

Return type string

history_length
Property returning a number with the shell’s history file length.

Returns history file length

Return type int

key_file
Property returning a file name containing x509 certificate private key. This is used for
LMIIndicationListener.

Returns x509 certificate private key

Return type string

use_cache
Property returning a bool flag, if the shell should use cache for class retrieval.

Returns flag, if the shell should use a cache

Return type bool

use_exceptions
Property returning a bool flag, if the shell should throw the exceptions away, or if they should be propagated
further.

Returns flag, if the shell should use exceptions, or throw them away

Return type bool

LMIShellLogger

class lmi.shell.LMIShellLogger.LMIShellLogger(name, level=0)
LMIShell’s logger with queueing capability.

critical(msg, *args, **kwargs)
Log a message with severity ‘CRITICAL’.

debug(msg, *args, **kwargs)
Log a message with severity ‘DEBUG’.

error(msg, *args, **kwargs)
Log a message with severity ‘ERROR’.

exception(msg, *args, **kwargs)
Log a message with severity ‘ERROR’ also with exception information.

info(msg, *args, **kwargs)
Log a message with severity ‘INFO’.

processQueue()
Logs all enabled log records stored in internal queue.

setLevel(level)
Sets a logging level of this handler. If there are any log records stored in internal queue, they are also
handled.

3.1. OpenLMI client components 125

OpenLMI Documentation, Release latest

Parameters level (int) – logging level

warning(msg, *args, **kwargs)
Log a message with severity ‘WARNING’.

lmi.shell.LMIShellLogger.lmi_get_logger()
Returns LMIShell’s logger.

Returns logger

lmi.shell.LMIShellLogger.lmi_init_logger()
Initializes LMIShell’s logging.

lmi.shell.LMIShellLogger.lmi_setup_logger(log_options)
Sets logging level.

Parameters log_options (int) – level defined in LMIShellOptions

LMIShellOptions

class lmi.shell.LMIShellOptions.LMIShellOptionParser(prog=None, usage=None, de-
scription=None, epilog=None,
version=None, parents=[
], formatter_class=<class
‘argparse.HelpFormatter’>,
prefix_chars=’-‘, from-
file_prefix_chars=None,
argument_default=None,
conflict_handler=’error’,
add_help=True)

Helper class for CLI option parsing.

error(msg)
Prints help message, error message and exits with erro code 2.

class lmi.shell.LMIShellOptions.LMIShellOptions(argv)
Class representing a LMIShell command line options. In the constructor, all command line options before a
script name are passed to the LMIShell. First position argument belongs to the script and the rest of command
line options is passed to the script run under the LMIShell.

Parameters argv (list) – CLI arguments

cwd_first_in_path

Returns True, if CWD should be prepended in sys.path; False if appended

interact

Returns flag, which indicates, if the LMIShell should enter an interactive mode, after executing
a provided script. The behavior is similar to python interpreter

Return type bool

interactive

Returns flag, which tells if the LMIShell should be initially run in the interactive mode

Return type bool

log

Returns log level

126 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Return type int

Log level can be one of the following:

•_LOG_DEFAULT

•_LOG_VERBOSE

•_LOG_MORE_VERBOSE

•_LOG_QUIET

script_argv

Returns list of command line arguments of the interpreted script

script_name

Returns script name, which is about to be run under the LMIShell

Return type string

verify_server_cert

Returns flag, which indicates, if LMIShell should verify server side certificate, if SSL used

Return type bool

class lmi.shell.LMIShellOptions.LMIShellOptionsHelpWithVersionFormatter(prog,
in-
dent_increment=2,
max_help_position=24,
width=None)

Helper class used for help message formatting.

LMIShellVersion

LMISubscription

class lmi.shell.LMISubscription.LMISubscription(client, cim_filter, cim_handler,
cim_subscription, permanent)

Class holding information about a indication subscription.

Parameters

• client (LMIShellClient) – client object used for CIMOM communication

• cim_filter (tuple) – contains filter object and bool indicator, if the filter object was created
temporarily

• cim_handler (tuple) – contains handler object and bool indicator, if the handler object was
created temporarily

• cim_subscription – subscription object

• permanent (bool) – indicates, if the indication should be deleted on the LMIShell’s quit

delete()
Cleans up the indication subscription.

First it deletes subscription object. If LMISubscription._cim_filter_tpl contains a
flag, that the filter object was created temporarily, it will be deleted by this call. If
LMISubscription._cim_handler_tlp contains an flag, that the handler object was created tem-
porarily, it will be deleted as well.

3.1. OpenLMI client components 127

OpenLMI Documentation, Release latest

This is called from LMIConnection object, which holds an internal list of all subscribed indications by
the LMIShell (if not created by hand).

LMIUtil

class lmi.shell.LMIUtil.LMIPassByRef(val)
Helper class used for passing a value by reference. It uses the advantage of python, where all the dictionaries
are passed by reference.

Parameters val – value, which will be passed by reference

Example of usage:

by_ref = LMIPassByRef(some_value)
by_ref.value == some_value

value

Returns value passed by reference.

class lmi.shell.LMIUtil.LMIUseExceptionsHelper
Singleton helper class used for storing a bool flag, which defines, if the LMIShell should propagate exceptions
or dump them.

use_exceptions

Returns whether the LMIShell should propagate the exceptions, or throw them away

Return type bool

lmi.shell.LMIUtil.lmi_associators(assoc_classes)
Helper function to speed up associator traversal. Returns a list of tuples, where each tuple contains
LMIInstance objects, which are in association.

Parameters assoc_classes (list) – list of LMIClass objects, for which the associations will be
returned

Returns list of tuples of LMIInstance objects in association

lmi.shell.LMIUtil.lmi_cast_to_cim(t, value)
Casts the value to CIM type.

Parameters

• t (string) – string of CIM type

• value – variable to cast

Returns cast value in wbem type

lmi.shell.LMIUtil.lmi_cast_to_lmi(t, value)
Casts the value to LMI (python) type.

Parameters

• t (string) – string of CIM type

• value – variable to cast

Returns cast value in python native type

lmi.shell.LMIUtil.lmi_get_use_exceptions()

Returns whether the LMIShell should use the exceptions, or throw them away

128 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Return type bool

lmi.shell.LMIUtil.lmi_instance_to_path(instance)
Helper function, which returns wbem.CIMInstanceName extracted out of input instance.

Parameters instance – object, which can be instance of following classes:

• wbem.CIMInstance

• wbem.CIMInstanceName

• LMIInstance

• LMIInstanceName

Returns extracteed wbem.CIMInstanceName object

Raises TypeError

lmi.shell.LMIUtil.lmi_is_localhost(uri)
Helper function, which returns True, if URI points to localhost.

Parameters uri (str) – URI to check

lmi.shell.LMIUtil.lmi_isinstance(lmi_obj, lmi_class)
Function returns True if lmi_obj is an instance of a lmi_class, False otherwise. When passed
LMIInstance, LMIInstanceName as lmi_obj and lmi_class is of LMIClass type, function can
tell, if such lmi_obj is direct instance of LMIClass, or it’s super class.

If lmi_obj and lmi_class is not instance of mentioned classes, an exception will be raised.

Parameters

• lmi_obj – instance of LMIInstance or LMIInstanceName which is checked, if such
instance is instance of the lmi_class

• lmi_class (LMIClass) – instance of LMIClass object

Returns whether lmi_obj is instance of lmi_class

Return type bool

Raises TypeError

lmi.shell.LMIUtil.lmi_parse_uri(uri)
Parses URI into scheme, hostname, port, username and password.

lmi.shell.LMIUtil.lmi_raise_or_dump_exception(e=None)
Function which either raises an exception, or throws it away.

Parameters e (Exception) – exception, which will be either raised or thrown away

lmi.shell.LMIUtil.lmi_set_use_exceptions(use=True)
Sets a global flag indicating, if the LMIShell should use the exceptions, or throw them away.

Parameters use (bool) – specifies, whether the LMIShell should use the exceptions

lmi.shell.LMIUtil.lmi_transform_to_cim_param(t, value)
Helper function for method calls, which transforms input object into wbem.CIMInstanceName object.
Members if lists, dictionaries and tuples are transformed as well. The function does not cast numeric types.

Parameters

• t (string) – string of CIM type

• value – object to be transformed to wbem type.

Returns transformed LMIShell’s object into wbem one

3.1. OpenLMI client components 129

OpenLMI Documentation, Release latest

lmi.shell.LMIUtil.lmi_transform_to_lmi(conn, value)
Transforms returned values from a method call into LMI wrapped objects. Returns transformed input, where
wbem.CIMInstance and wbem.CIMInstanceName are wrapped into LMI wrapper classes and primitive
types are cast to python native types.

Parameters

• conn (LMIConnection) – connection object

• value – object to be transformed into python type from wbem one

Returns transformed py:wbem object into LMIShell one

lmi.shell.LMIUtil.lmi_wrap_cim_class(conn, cim_class_name, cim_namespace_name)
Helper function, which returns wrapped wbem.CIMClass into LMIClass.

Parameters

• conn (LMIConnection) – connection object

• cim_class_name (string) – string containing wbem.CIMClass name

• cim_namespace_name (string) – string containing wbem.CIMNamespace name, or
None, if the namespace is not known

Returns wrapped wbem.CIMClass into LMIClass

lmi.shell.LMIUtil.lmi_wrap_cim_instance(conn, cim_instance, cim_class_name,
cim_namespace_name)

Helper function, which returns wrapped wbem.CIMInstance into LMIInstance.

Parameters

• conn (LMIConnection) – connection object

• cim_instance (CIMInstance) – wbem.CIMInstance object to be wrapped

• cim_class_name (string) – wbem.CIMClass name

• cim_namespace_name (string) – wbem.CIMNamespace name, or None, if the names-
pace is not known

Returns wrapped wbem.CIMInstance into LMIInstance

lmi.shell.LMIUtil.lmi_wrap_cim_instance_name(conn, cim_instance_name)
Helper function, which returns wrapped wbem.CIMInstanceName into LMIInstanceName.

Parameters

• conn (LMIConnection) – connection object

• cim_instance_name (CIMInstanceName) – wbem.CIMInstanceName object to be
wrapped

Returns wrapped wbem.CIMInstanceName into LMIInstanceName

lmi.shell.LMIUtil.lmi_wrap_cim_method(conn, cim_method_name, lmi_instance)
Helper function, which returns wrapped wbem.CIMMethod into LMIMethod.

Parameters

• conn (LMIConnection) – connection object

• cim_method_name (string) – method name

• lmi_instance (LMIInstance) – object, on which the method call will be issued

Returns wrapped wbem.CIMMethod into LMIMethod

130 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

lmi.shell.LMIUtil.lmi_wrap_cim_namespace(conn, cim_namespace_name)
Helper function, which returns wrapped CIM namespace in LMINamespace.

Parameters

• conn (LMIConnection) – connection object

• cim_namespace_name (string) – CIM namespace name

Returns wrapped CIM namespace into LMINamespace

LMIWSMANClient

class lmi.shell.LMIWSMANClient.LMIWSMANClient(uri, username=’‘, password=’‘, inter-
active=False, verify_server_cert=True,
key_file=None, cert_file=None)

WS-MAN client.

Parameters

• uri (string) – URI of the CIMOM

• username (string) – account, under which, the CIM calls will be performed

• password (string) – user’s password

• verify_server_cert (bool) – indicates, whether a server side certificate needs to be verified,
if SSL used; default value is True

• key_file (string) – path to x509 key file; default value is None

• cert_file (string) – path to x509 cert file; default value is None

association(instance, relationship, result_cls, AssocClass=None, ResultClass=None, Role=None,
ResultRole=None, limit=-1)

Enumerates association instance (names).

Parameters

• instance – object, for which the association objects will be enumerated. The object needs
to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• relationship – LMIWSMANClient.ASSOC_ASSOCIATORS or
LMIWSMANClient.ASSOC_REFERENCES

• result_cls – LMIWSMANClient.RES_INSTANCE or
LMIWSMANClient.RES_INSTANCE_NAME

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of names by mandating that each returned name identify an object that shall be associ-
ated to the source object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of names
by mandating that each returned name identify an object that shall be either an instance of
this class (or one of its subclasses) or be this class (or one of its subclasses).

3.1. OpenLMI client components 131

OpenLMI Documentation, Release latest

• Role (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the source object plays the specified role. That is,
the name of the property in the association class that refers to the source object shall match
the value of this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the named returned object plays the specified role.
That is, the name of the property in the association class that refers to the returned object
shall match the value of this parameter.

• limit (int) – enumeration limit

Returns list of association objects

call_method(*args, **kwargs)
Executes a method within a given instance.

Parameters

• instance – object, on which the method will be executed. The object needs to be instance
of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• method (string) – string containing a method name

• params (dictionary) – parameters passed to the method call

Returns LMIReturnValue object with rval set to return value of the method call, rparams set
to returned parameters from the method call, if no error occurs; otherwise rval is set to -1 and
errorstr to appropriate error string

Raises CIMError

connect()
Compatibility method present due to LMICIMXMLClient.

create_instance(*args, **kwargs)
Not supported.

delete_instance(*args, **kwargs)
Not supported.

disconnect()
Compatibility method present due to LMICIMXMLClient.

dummy()
Sends a “dummy” request to verify credentials.

Returns LMIReturnValue with rval set to True, if provided credentials are OK; False other-
wise. If LMIShell uses exceptions, CIMError will be raised.

Raises CIMError

enumerate(result_cls, classname, namespace=None, inst_filter=None, limit=-1, **kwargs)
Enumerates instance (names).

132 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Parameters

• result_cls (int) – either LMIWSMANClient.RES_INSTANCE or
LMIWSMANClient.RES_INSTANCE_NAME

• classname (str) – class name to enumerate

• namespace (str) – namespace where the class is located

• inst_filter (dict) – dictionary containing keys and values for the filter

• limit (int) – enumeration limit

• kwargs – keyword arguments used for inst_filter

Return type list containing wbem.CIMInstance of wbem.CIMInstanceName

Raises CIMError

enumerate_iter(classname, namespace, filt, options=None, limit=-1)
Enumerates instance (names).

Parameters

• filt (pywsman.Filter) – filter for enumeration

• options (pywsman.ClientOptions) – options for enumeration

• limit (int) – enumeration limit

Return type list containing wbem.CIMInstance of wbem.CIMInstanceName

Raises CIMError

enumerate_iter_with_uri(uri, filt, options=None, limit=-1)
Enumerates instance (names).

Parameters

• uri (str) – URI of the resource

• filt (pywsman.Filter) – filter for enumeration

• options (pywsman.ClientOptions) – options for enumeration

• limit (int) – enumeration limit

Return type list containing wbem.CIMInstance of wbem.CIMInstanceName

Raises CIMError

exec_query(*args, **kwargs)
Executes a query and returns a list of wbem.CIMInstance objects.

Parameters

• query_lang (string) – query language

• query (string) – query to execute

• namespace (string) – target namespace for the query

Returns LMIReturnValue object with rval set to list of wbem.CIMInstance objects, if
no error occurs; otherwise rval is set to None and errorstr is set to corresponding error
string

Raises CIMError

3.1. OpenLMI client components 133

OpenLMI Documentation, Release latest

get_associator_names(*args, **kwargs)
Returns a list of associated wbem.CIMInstanceName objects with an input instance.

Parameters

• instance – for this object the list of associated wbem.CIMInstanceName will be re-
turned. The object needs to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of names by mandating that each returned name identify an object that shall be associ-
ated to the source object through an instance of this class or one of its subclasses.

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of names
by mandating that each returned name identify an object that shall be either an instance of
this class (or one of its subclasses) or be this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the source object plays the specified role. That is,
the name of the property in the association class that refers to the source object shall match
the value of this parameter.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of names by
mandating that each returned name identify an object that shall be associated to the source
object through an association in which the named returned object plays the specified role.
That is, the name of the property in the association class that refers to the returned object
shall match the value of this parameter.

• limit (int) – enumeration limit

Returns list of associated wbem.CIMInstanceName objects with an input instance, if no
error occurs; otherwise en empty list is returned

Raises CIMError

get_associators(*args, **kwargs)
Returns a list of associated wbem.CIMInstance objects with an input instance.

Parameters

• instance – for this object the list of associated wbem.CIMInstance objects will be
returned. The object needs to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• AssocClass (string) – valid CIM association class name. It acts as a filter on the returned
set of objects by mandating that each returned object shall be associated to the source
object through an instance of this class or one of its subclasses. Default value is None.

134 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be either an instance of this class (or
one of its subclasses) or be this class (or one of its subclasses). Default value is None.

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall be associated with the source object through an
association in which the source object plays the specified role. That is, the name of the
property in the association class that refers to the source object shall match the value of
this parameter. Default value is None.

• ResultRole (string) – valid property name. It acts as a filter on the returned set of objects
by mandating that each returned object shall be associated to the source object through an
association in which the returned object plays the specified role. That is, the name of the
property in the association class that refers to the returned object shall match the value of
this parameter. Default value is None.

• IncludeQualifiers – unused

• IncludeClassOrigin – unused

• PropertyList – unused

• limit (int) – enumeration limit

Returns list of associated wbem.CIMInstance objects with an input instance, if no error
occurs; otherwise an empty list is returned

Raises CIMError

get_class(*args, **kwargs)
Not supported.

get_class_names(*args, **kwargs)
Not supported.

get_instance(*args, **kwargs)
Returns a wbem.CIMInstance object.

Parameters

• instance – path of the object, which is about to be retrieved. The object needs to be
instance of following classes:

– wbem.CIMInstanceName

– wbem.CIMInstance

– LMIInstanceName

– LMIInstance

• LocalOnly – unused

• IncludeQualifiers – unused

• IncludeClassOrigin – unused

• PropertyList – unused

Returns LMIReturnValue object, where rval is set to wbem.CIMInstance object, if no
error occurs; otherwise errorstr is set to corresponding error string

Raises CIMError

get_instance_names(*args, **kwargs)
Returns a list of wbem.CIMInstanceName objects.

3.1. OpenLMI client components 135

OpenLMI Documentation, Release latest

Parameters

• classname (string) – class name

• namespace (string) – namespace name, where the instance names live

• inst_filter (dict) – dictionary containing filter values. The key corresponds to the primary
key of the wbem.CIMInstanceName; value contains the filtering value.

• limit (int) – enumeration limit

• kwargs (dictionary) – supported keyword arguments (these are deprecated)

– Key or key (string) – filtering key, see above

– Value or value (string) – filtering value, see above

Returns LMIReturnValue object with rval contains a list of wbem.CIMInstanceName
objects, if no error occurs; otherwise rval is set to None and errorstr contains appro-
priate error string

Raises CIMError

get_instances(*args, **kwargs)
Returns a list of wbem.CIMInstance objects.

Parameters

• classname (string) – class name

• namespace (string) – namespace, where the instances live

• inst_filter (dictionary) – dictionary containing filter values. The key corresponds to the
primary key of the wbem.CIMInstanceName; value contains the filtering value.

• client_filtering (bool) – if True, client-side filtering will be performed, otherwise the fil-
tering will be done by a CIMOM. Default value is False.

• limit (int) – enumeration limit

• kwargs (dictionary) – supported keyword arguments (these are deprecated)

– Key or key (string) – filtering key, see above

– Value or value (string) – filtering value, see above

Returns LMIReturnValue object with rval set to a list of wbem.CIMIntance objects, if
no error occurs; otherwise rval is set to None and errorstr is set to corresponding error
string.

Raises CIMError

get_reference_names(*args, **kwargs)
Returns a list of association wbem.CIMInstanceName objects with an input instance.

Parameters

• instance – for this object the association wbem.CIMInstanceName objects will be
returned. The object needs to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

136 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of object
names by mandating that each returned Object Name identify an instance of this class (or
one of its subclasses) or this class (or one of its subclasses).

• Role (string) – valid property name. It acts as a filter on the returned set of object names by
mandating that each returned object name shall identify an object that refers to the target
instance through a property with a name that matches the value of this parameter.

• limit (int) – enumeration limit

Returns list of association wbem.CIMInstanceName objects with an input instance, if no
error occurs; otherwise an empty list is returned

Raises CIMError

get_references(*args, **kwargs)
Returns a list of association wbem.CIMInstance objects with an input instance.

Parameters

• instance – for this object the association wbem.CIMInstances objects will be re-
turned. The object needs to be instance of following classes:

– wbem.CIMInstance

– wbem.CIMInstanceName

– LMIInstance

– LMIInstanceName

• ResultClass (string) – valid CIM class name. It acts as a filter on the returned set of
objects by mandating that each returned object shall be an instance of this class (or one of
its subclasses) or this class (or one of its subclasses). Default value is None.

• Role (string) – valid property name. It acts as a filter on the returned set of objects by
mandating that each returned object shall refer to the target object through a property with
a name that matches the value of this parameter. Default value is None.

• IncludeQualifiers – unused

• IncludeClassOrigin – unused

• PropertyList – unused

• limit (int) – enumeration limit

Returns list of association wbem.CIMInstance objects with an input instance, if no error
occurs; otherwise an empty list is returned

Raises CIMError

get_superclass(*args, **kwargs)
Not supported.

hostname

Returns hostname of CIMOM

Return type string

modify_instance(*args, **kwargs)
Not supported.

uri

Returns URI of the CIMOM

3.1. OpenLMI client components 137

OpenLMI Documentation, Release latest

Return type string

username

Returns user name as a part of provided credentials

Return type string

LMI Scripts API reference

This is a generated documentation from OpenLMI Scripts sources. This covers everything under lmi.scripts
namespace.

lmi.scripts.common package provides useful functionality for script development. Various scripts share this
directory in order to provide command-line interface through LMI metacommand.

Generated from version: 0.10.1

Scripts version: 0.3.0

LMI Scripts common library reference

This library builds on top of LMIShell‘s functionality. It provides various utilities and wrappers for building command-
line interfaces to OpenLMI Providers.

Generated from version: 0.10.1

Exported members: Package with client-side python modules and command line utilities.

lmi.scripts.common.get_computer_system(ns)
Obtain an instance of CIM_ComputerSystem or its subclass. Preferred class name can be configured in
configuration file. If such class does not exist, a base class (CIM_ComputerSystem) is enumerated instead.
First feasible instance is cached and returned.

Parameters ns (lmi.shell.LMINamespace) – Namespace object where to look for computer
system class.

Returns Instance of CIM_ComputerSystem.

Return type lmi.shell.LMIInstance.

Submodules:

command This subpackage defines base classes and utility functions for declaring commands. These serve as wrap-
pers for functions in libraries specific to particular provider.

Tree of these commands build a command line interface for this library.

command.base Module defining base command class for all possible commands of lmi meta-command.

lmi.scripts.common.command.base.DEFAULT_FORMATTER_OPTIONS = {‘padding’: 0, ‘human_friendly’: False, ‘no_headings’: False}
Default formatting options overriden by options passed onc ommand-line and set in configuration file.

138 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

class lmi.scripts.common.command.base.LmiBaseCommand(app, cmd_name, parent=None)
Abstract base class for all commands handling command line arguments. Instances of this class are organized in
a tree with root element being the lmi meta-command (if not running in interactive mode). Each such instance
can have more child commands if its LmiBaseCommand.is_multiplexer() method return True. Each
has one parent command except for the top level one, whose parent property returns None.

Set of commands is organized in a tree, where each command (except for the root) has its own parent.
is_end_point() method distinguishes leaves from nodes. The path from root command to the leaf is a
sequence of commands passed to command line.

There is also a special command called selector. Its is_selector() method returns True. It selects proper
command that shall be passed all the arguments based on expression with profile requirements. It shares its
name and parent with selected child.

If the LmiBaseCommand.has_own_usage() returns True, the parent command won’t process the whole
command line and the remainder will be passed as a second argument to the LmiBaseCommand.run()
method.

Parameters

• app – Main application object.

• cmd_name (string) – Name of command.

• parent (LmiBaseCommand) – Parent command.

app
Return application object.

classmethod child_commands()
Abstract class method returning dictionary of child commands with structure:

{ "command-name" : cmd_factory, ... }

Dictionary contains just a direct children (commands, which may immediately follow this particular com-
mand on command line).

cmd_name
Name of this subcommand as a single word.

cmd_name_parts
Convenience property calling get_cmd_name_parts() to obtain command path as a list of all pre-
ceding command names.

Return type list

format_options
Compose formatting options. Parent commands are queried for defaults. If command has no parent, default
options will be taken from DEFAULT_FORMATTER_OPTIONS which are overriden by config settings.

Returns Arguments passed to formatter factory when formatter is for current command is con-
structed.

Return type dictionary

get_cmd_name_parts(all_parts=False, demand_own_usage=True, for_docopt=False)
Get name of this command as a list composed of names of all preceding commands since the top level one.
When in interactive mode, only commands following the active one will be present.

Parameters

• full (boolean) – Take no heed to the active command or interactive mode. Return all
command names since top level node inclusive. This is overriden with for_docopt flag.

3.1. OpenLMI client components 139

OpenLMI Documentation, Release latest

• demand_own_usage (boolean) – Wether to continue the upward traversal through com-
mand hieararchy past the active command until the command with its own usage is found.
This is the default behaviour.

• for_docopt (boolean) – Docopt parser needs to be given arguments list without the first
item compared to command names in usage string it receives. Thus this option causes
skipping the first item that would be otherwise included.

Returns Command path. Returned list will always contain at least the name of this command.

Return type list

classmethod get_description()
Return description for this command. This is usually a first line of documentation string of a class.

Return type string

get_usage(proper=False)
Get command usage. Return value of this function is used by docopt parser as usage string. Command
tree is traversed upwards until command with defined usage string is found. End point commands (leaves)
require manually written usage, so the first command in the sequence of parents with own usage string is
obtained and its usage returned. For nodes missing own usage string this can be generated based on its
subcommands.

Parameters proper (boolean) – Says, whether the usage string written manually is required or
not. It applies only to node (not a leaf) commands without its own usage string.

classmethod has_own_usage()

Returns True, if this command has its own usage string, which is returned by
LmiBaseCommand.get_description(). Otherwise the parent command must be
queried.

Return type boolean

classmethod is_end_point()

Returns True, if this command parses the rest of command line and can not have any child
subcommands.

Return type boolean

classmethod is_multiplexer()
Is this command a multiplexer? Note that only one of is_end_point(), is_selector() and this
method can evaluate to‘‘True‘‘.

Returns True if this command is not an end-point command and it’s a multiplexer. It contains
one or more subcommands. It consumes the first argument from command-line arguments
and passes the rest to one of its subcommands.

Return type boolean

classmethod is_selector()
Is this command a selector?

Returns True if this command is a subclass of lmi.scripts.common.command.select.LmiSelectCommand.

Return type boolean

parent
Return parent command.

run(args)
Handle the command line arguments. If this is not an end point command, it will pass the unhandled

140 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

arguments to one of it’s child commands. So the arguments are processed recursively by the instances of
this class.

Parameters args (list) – Arguments passed to the command line that were not yet parsed. It’s
the contents of sys.argv (if in non-interactive mode) from the current command on.

Returns Exit code of application. This maybe also be a boolean value or None. None and
True are treated as a success causing exit code to be 0.

Return type integer

session

Returns Session object. Session for command and all of its children may be overriden with a
call to set_session_proxy().

Return type lmi.scripts.common.session.Session

set_session_proxy(session)
Allows to override session object. This is useful for especially for conditional commands (subclasses of
LmiSelectCommand) that devide connections to groups satisfying particular expression. These groups
are turned into session proxies containing just a subset of connections in global session object.

Parameters session – Session object.

command.checkresult This module defines LmiCheckResult command class and related utilities.

class lmi.scripts.common.command.checkresult.LmiCheckResult(*args, **kwargs)
Run an associated action and check its result. It implicitly makes no output if the invocation is successful and
expected result matches.

List of additional recognized properties:

EXPECT : Value, that is expected to be returned by invoked associated function. This can also be a
callable taking two arguments:

1. options - Dictionary with parsed command line options returned by docopt.

2. result - Return value of associated function.

Using metaclass: CheckResultMetaClass.

check_result(options, result)
Check the returned value of associated function.

Parameters

• options (dictionary) – Dictionary as returned by docopt parser after running
transform_options().

• result – Any return value that will be compared against what is expected.

Returns Whether the result is expected value or not. If tuple is returned, it contains
(passed_flag, error_description).

Return type boolean or tuple.

take_action(connection, args, kwargs)
Invoke associated method and check its return value for single host.

Parameters

• args (list) – List of arguments to pass to the associated function.

• kwargs (dictionary) – Keyword arguments to pass to the associated function.

3.1. OpenLMI client components 141

OpenLMI Documentation, Release latest

Returns Exit code (0 on success).

Return type integer

exception lmi.scripts.common.command.checkresult.LmiResultFailed
Exception raised when associated function returns unexpected result. This is evaluated by
LmiCheckResult.check_result() method.

command.endpoint Defines base command class for all endpoint commands. Those having no children.

class lmi.scripts.common.command.endpoint.LmiEndPointCommand(*args, **kwargs)
Base class for any leaf command.

List of additional recognized properties:

CALLABLE [tuple] Associated function. Will be wrapped in
LmiEndPointCommand.execute() method and will be accessible directly as
a cmd.execute.dest property. It may be specified either as a string in form
"<module_name>:<callable>" or as a reference to callable itself.

ARG_ARRAY_SUFFIX [str] String appended to every option parsed by docopt hav-
ing list as an associated value. It defaults to empty string. This modifi-
cation is applied before calling LmiEndPointCommand.verify_options() and
LmiEndPointCommand.transform_options().

FORMATTER [callable] Default formatter factory for instances of given command. This factory
accepts an output stream as the only parameter and returns an instance of Formatter.

Using metaclass: meta.EndPointCommandMetaClass.

classmethod dest_pos_args_count()
Number of positional arguments the associated function takes from command. These arguments are created
by the command alone – they do not belong to options in usage string. Function can take additional
positional arguments that need to be covered by usage string.

Return type integer

execute(*args, **kwargs)
Subclasses must override this method to pass given arguments to command library function. This function
shall be specified in CALLABLE property.

formatter
Return instance of default formatter.

Return type Formatter

formatter_factory()
Subclasses shall override this method to provide default formatter factory for printing output.

Returns Subclass of basic formatter.

produce_output(data)
This method can be use to render and print results with default formatter.

Parameters data – Is an object expected by the produce_output() method of formatter.

run(args)
Create options dictionary from input arguments, verify them, transform them, make positional and key-
word arguments out of them and pass them to process_session().

Parameters args (list) – List of command arguments.

142 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Returns Exit code of application.

Return type integer

run_with_args(args, kwargs)
Process end-point arguments and exit.

Parameters

• args (list) – Positional arguments to pass to associated function in command library.

• kwargs (dictionary) – Keyword arguments as a dictionary.

Returns Exit code of application.

Return type integer

transform_options(options)
This method can be overriden in subclasses if options shall be somehow modified before passing them
associated function.

Note: Run after verify_options() method.

Parameters options (dictionary) – Dictionary as returned by docopt parser.

verify_options(options)
This method can be overriden in subclasses to check, whether the options given on command line are
valid. If any flaw is discovered, an LmiInvalidOptions exception shall be raised. Any returned value
is ignored.

Note: This is run before transform_options() method.

Parameters options (dictionary) – Dictionary as returned by docopt parser.

lmi.scripts.common.command.endpoint.opt_name_sanitize(opt_name)
Make a function parameter name out of option name. This replaces any character not suitable for python
identificator with ’_’ and make the whole string lowercase.

Parameters opt_name (string) – Option name.

Returns Modified option name.

Return type string

lmi.scripts.common.command.endpoint.options_dict2kwargs(options)
Convert option name from resulting docopt dictionary to a valid python identificator token used as function
argument name.

Parameters options (dictionary) – Dictionary returned by docopt call.

Returns New dictionary with keys passable to function as argument names.

Return type dictionary

command.helper Module with convenient function for defining user commands.

3.1. OpenLMI client components 143

OpenLMI Documentation, Release latest

lmi.scripts.common.command.helper.make_list_command(func, name=None,
columns=None, ver-
ify_func=None, trans-
form_func=None)

Create a command subclassed from LmiLister. Please refer to this class for detailed usage.

Parameters

• func (string or callable) – Contents of CALLABLE property.

• name (string) – Optional name of resulting class. If not given, it will be made from the
name of associated function.

• columns (tuple) – Contents of COLUMNS property.

• verify_func (callable) – Callable overriding py:meth:~.endpoint.LmiEndPointCommand.verify_options
method.

• transform_func (callable) – Callable overriding transform_options() method.

Returns Subclass of LmiLister.

Return type type

lmi.scripts.common.command.helper.register_subcommands(command_name, usage,
command_map, fall-
back_command=None)

Create a multiplexer command (a node in a tree of commands).

Parameters

• command_name (string) – Name of created command. The same as will be given on a
command line.

• usage (string) – Usage string parseable by docopt.

• command_map (dictionary) – Dictionary of subcommands. Associates command names
to their factories. It’s assigned to COMMANDS property.

• fallback_command (LmiEndPointCommand) – Command factory used when no com-
mand is given on command line.

Returns Subclass of LmiCommandMultiplexer.

Return type type

lmi.scripts.common.command.helper.select_command(command_name, *args, **kwargs)
Create command selector that loads command whose requirements are met.

Example of invocation:

Hardware = select_command(’Hardware’,
("Openlmi-Hardware >= 0.4.2", "lmi.scripts.hardware.current.Cmd"),
("Openlmi-Hardware < 0.4.2" , "lmi.scripts.hardware.pre042.Cmd"),
default=HwMissing

)

Above example checks remote broker for OpenLMI-Hardware provider. If it is installed and its version is equal
or higher than 0.4.2, command from current module will be used. For older registered versions command
contained in pre042 module will be loaded. If hardware provider is not available, HwMissing command will
be loaded instead.

See also:

144 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Check out the grammer describing language used in these conditions at
lmi.scripts.common.versioncheck.parser.

Parameters

• args – List of pairs (condition, command) that are inspected in given order until
single condition is satisfied. Associated command is then loaded. Command is either a
reference to command class or path to it given as string. In latter case last dot divides
module’s import path and command name.

• default – This command will be loaded when no condition from args is satisfied.

command.lister Defines command classes producing tablelike output.

class lmi.scripts.common.command.lister.LmiBaseListerCommand(*args, **kwargs)
Base class for all lister commands.

classmethod get_columns()

Returns Column names for resulting table. COLUMNS property will be converted to this class
method. If None, the associated function shall return column names as the first tuple of
returned list. If empty tuple or list, no header shall be printed and associated function returns
just data rows.

Return type list or tuple or None

class lmi.scripts.common.command.lister.LmiInstanceLister(*args, **kwargs)
End point command outputting a table of instances for each host. Associated function shall return a list of
instances. They may be prepended with column names depending on value of DYNAMIC_PROPERTIES. Each
instance will occupy single row of table with property values being a content of cells.

List of additional recognized properties is the same as for LmiShowInstance. There is just one difference.
Either DYNAMIC_PROPERTIES must be True or PROPERTIES must be filled.

Using metaclass: InstanceListerMetaClass.

classmethod render(_self, inst)
Return tuple of (column_names, values) ready for output by formatter.

take_action(connection, args, kwargs)
Collects results of single host.

Parameters

• connection (lmi.shell.LMIConnection) – Connection to a single host.

• args (list) – Positional arguments for associated function.

• kwargs (dictionary) – Keyword arguments for associated function.

Returns Column names and item list as a pair.

Return type tuple

class lmi.scripts.common.command.lister.LmiLister(*args, **kwargs)
End point command outputting a table for each host. Associated function shall return a list of rows. Each row
is represented as a tuple holding column values.

List of additional recognized properties:

COLUMNS [tuple] Column names. It’s a tuple with name for each column. Each row shall then
contain the same number of items as this tuple. If omitted, associated function is expected to
provide them in the first row of returned list. It’s translated to get_columns() class method.

3.1. OpenLMI client components 145

OpenLMI Documentation, Release latest

Using metaclass: ListerMetaClass.

take_action(connection, args, kwargs)
Collects results of single host.

Parameters

• connection (lmi.shell.LMIConnection) – Connection to a single host.

• args (list) – Positional arguments for associated function.

• kwargs (dictionary) – Keyword arguments for associated function.

Returns Column names and item list as a pair.

Return type tuple

command.meta Meta classes simplifying declaration of user commands.

Each command is defined as a class with a set of properties. Some are mandatory, the others have some default values.
Each of them is transformed by metaclasse to some function, class method or other property depending on command
type and semantic of property. Property itself is removed from resulting class after being processed by meta class.

class lmi.scripts.common.command.meta.CheckResultMetaClass
Meta class for end-point command “check result”. Additional handled properties:

EXPECT : Value to compare against the return value. Mandatory property.

EXPECT property is transformed into a checkresult.LmiCheckResult.check_result() method
taking two arguments (options, result) and returning a boolean.

class lmi.scripts.common.command.meta.EndPointCommandMetaClass
End point command does not have any subcommands. It’s a leaf of command tree. It wraps some function in
command library being referred to as an associated function. It handles following class properties:

CALLABLE [str or callable] An associated function. Mandatory property.

OWN_USAGE [bool or str] Usage string. Optional property.

ARG_ARRAY_SUFFIX [str] Suffix added to argument names containing array of values. Optional
property.

FMT_NO_HEADINGS [bool] Allows to force printing of table headers on and off for this com-
mand. Default is to print them.

FMT_HUMAN_FRIENDLY [bool] Tells formatter to make the output more human friendly. The
result is dependent on the type of formatter used.

class lmi.scripts.common.command.meta.InstanceListerMetaClass
Meta class for instance lister command handling the same properties as ShowInstanceMetaClass.

class lmi.scripts.common.command.meta.ListerMetaClass
Meta class for end-point lister commands. Handles following class properties:

COLUMNS [tuple] List of column names. Optional property. There are special values such as:

None or omitted Associated function provides column names in a first row of returned
list or generator.

empty list, empty tuple or False They mean that no headers shall be printed. It is
simalar to using FMT_NO_HEADINGS = True. But in this case all the rows re-
turned from associated functions are treated as data.

class lmi.scripts.common.command.meta.MultiplexerMetaClass
Meta class for node command (not an end-point command). It handles following class properties:

146 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

COMMANDS [dict] Command names with assigned command classes. Each of them is a direct
subcommands of command with this property. Mandatory property.

FALLBACK_COMMAND [LmiEndPointCommand] Command factory to use in case that no com-
mand is passed on command line.

Formatting options (starting with FMT_ are also accepted, and may used to set defaults for all subcommands.

class lmi.scripts.common.command.meta.SelectMetaClass
Meta class for select commands with guarded commands. Additional handled properties:

SELECT [list] List of commands guarded with expressions representing requirements on server’s
side that need to be met.

DEFAULT [str or LmiBaseCommand] Defines fallback command used in case no condition can
is satisfied.

class lmi.scripts.common.command.meta.SessionCommandMetaClass
Meta class for commands operating upon a session object. All associated functions take as first argument an
namespace abstraction of type lmi.shell.

Handles following class properties:

NAMESPACE [str] CIM namespace abstraction that will be passed to associated function. Defaults
to "root/cimv2". If False, raw lmi.shell.LMIConnection object will be passed to
associated function.

class lmi.scripts.common.command.meta.ShowInstanceMetaClass
Meta class for end-point show instance commands. Additional handled properties:

DYNAMIC_PROPERTIES [bool] Whether the associated function itself provides list of properties.
Optional property.

PROPERTIES [tuple] List of instance properties to print. Optional property.

These are translated in a render(), which should be marked as abstract in base lister class.

command.multiplexer Defines command class used to nest multiple commands under one.

class lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer(app,
cmd_name,
par-
ent=None)

Base class for node commands. It consumes just part of command line arguments and passes the remainder to
one of its subcommands.

Example usage:

class MyCommand(LmiCommandMultiplexer):
’’’
My command description.

Usage: %(cmd)s mycommand (subcmd1 | subcmd2)
’’’
COMMANDS = {’subcmd1’ : Subcmd1, ’subcmd2’ : Subcmd2}

Where Subcmd1 and Subcmd2 are some other LmiBaseCommand subclasses. Documentation string must
be parseable with docopt.

Recognized properties:

COMMANDS [dictionary] property will be translated to LmiCommandMultiplexer.child_commands()
class method by MultiplexerMetaClass.

3.1. OpenLMI client components 147

OpenLMI Documentation, Release latest

Using metaclass: meta.MultiplexerMetaClass.

classmethod child_commands()
Abstract class method, that needs to be implemented in subclass. This is done by associated meta-class,
when defining a command with assigned COMMANDS property.

Returns Dictionary of subcommand names with assigned command factories.

Return type dictionary

classmethod fallback_command()
This is overriden by MultiplexerMetaClass when the FALLBACK_COMMAND gets processed.

Returns Command factory invoked for missing command on command line.

Return type LmiEndPointCommand

run(args)
Handle optional parameters, retrieve desired subcommand name and pass the remainder of arguments to
it.

Parameters args (list) – List of arguments with at least subcommand name.

run_subcommand(cmd_name, args)
Pass control to a subcommand identified by given name.

Parameters

• cmd_name (string) – Name of direct subcommand, whose run() method shall be in-
voked.

• args (list) – List of arguments for particular subcommand.

Returns Application exit code.

Return type integer

command.select Defines command class used to choose other commands depending on profile and class require-
ments.

class lmi.scripts.common.command.select.LmiSelectCommand(app, cmd_name, par-
ent=None)

Base class for command selectors. It does not process command line arguments. Thery are passed unchanged
to selected command whose requirements are met. Its doc string is not interpreted in any way.

If there are more hosts, conditions are evaluated per each. They are then split into groups, each fulfilling
particular condition. Associated commands are then invoked on these groups separately.

Example usage:

class MySelect(LmiSelectCommand):
SELECT = [

(’OpenLMI-Hardware >= 0.4.2’
, ’lmi.scripts.hardware.current.Cmd’),
(’OpenLMI-Hardware’, ’lmi.scripts.hardware.pre042.Cmd’)

]
DEFAULT = MissingHwProviderCmd

Using metaclass: meta.SelectMetaClass.

eval_expr(expr, hosts, cache=None)
Evaluate expression on group of hosts.

Parameters

148 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• expr (string) – Expression to evaluate.

• hosts (list) – Group of hosts that shall be checked.

• cache (dictionary) – Optional cache object speeding up evaluation by reducing number of
queries to broker.

Returns Subset of hosts satisfying expr.

Return type list

classmethod get_conditionals()
Get the expressions with associated commands. This shall be overriden by a subclass.

Returns Pair of (expressions, default). Where expressions is a list of pairs
(condition, command). And default is the same as command used in case no
condition is satisfied.

Return type list

get_usage(proper=False)
Try to get usage of any command satisfying some expression.

Raises Same exceptions as select_cmds().

run(args)
Iterate over command factories with associated sessions and execute them with unchanged args.

select_cmds(cache=None)
Generator of command factories with associated groups of hosts. It evaluates given expressions on session.
In this process all expressions from get_conditionals() are checked in a row. Host satisfying some
expression is added to group associated with it and is excluded from processing following expressions.

Parameters cache (dictionary) – Optional cache object speeding up the evaluation by reducing
number of queries to broker.

Returns Pairs in form (command_factory, session_proxy).

Return type generator

Raises

• LmiUnsatisfiedDependencies if no condition is satisfied for at least one host.
Note that this exception is raised at the end of evaluation. This lets you choose whether
you want to process satisfied hosts - by processing the generator at once. Or whether
you want to be sure it is satisfied by all of them - you turn the generator into a list.

• LmiNoConnections if no successful connection was done.

command.session Defines a base class for all command classes operating upon a Session object.

class lmi.scripts.common.command.session.LmiSessionCommand(*args, **kwargs)
Base class for end-point commands operating upon a session object.

Using metaclass: SessionCommandMetaClass.

classmethod cim_namespace()
This returns default cim namespace, the connection object will be nested into before being passed to
associated function. It can be overriden in few ways:

1.by setting [CIM] Namespace option in configuration

2.by giving --namespace argument on command line to the lmi meta-command

3.by setting NAMESPACE property in declaration of command

3.1. OpenLMI client components 149

OpenLMI Documentation, Release latest

Higher number means higher priority.

classmethod dest_pos_args_count()
There is a namespace/connection object passed as the first positional argument.

execute_on_connection(connection, *args, **kwargs)
Wraps the execute() method with connection adjustments. Connection object is not usually passed
directly to associated function. Mostly it’s the namespace object that is expected. This method checks,
whether the namespace object is desired and modifies connection accordingly.

Parameters

• connection (lmi.shell.LMIConnection) – Connection to single host.

• args (list) – Arguments handed over to associated function.

• kwargs (dictionary) – Keyword arguments handed over to associated function.

process_host_result(hostname, success, result)
Called from process_session() after single host gets processed. By default this prints obtained
result with default formatter if the execution was successful. Children of this class may want to override
this.

Parameters

• hostname (string) – Name of host involved.

• success (boolean) – Whether the action on host succeeded.

• result – Either the value returned by associated function upon a successful invocation or
an exception.

process_session(session, args, kwargs)
Process each host of given session, call the associated command function, collect results and print it to
standard output.

Parameters

• session (Session) – Session object with set of hosts.

• args (list) – Positional arguments to pass to associated function in command library.

• kwargs (dictionary) – Keyword arguments as a dictionary.

Returns Exit code of application.

Return type integer

process_session_results(session, results)
Called at the end of process_session()‘s execution. It’s supposed to do any summary work upon
results from all hosts. By default it just prints errors in a form of list.

Parameters

• session (lmi.scripts.common.session.Session) – Session object.

• results (dictionary) – Dictionary of form:

{ ’hostname’ : (success_flag, result), ... }

where result is either an exception or returned value of associated function, depending on
success_flag. See the process_host_result().

take_action(connection, args, kwargs)
Executes an action on single host and collects results.

150 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Parameters

• connection (lmi.shell.LMIConnection) – Connection to a single host.

• args (list) – Positional arguments for associated function.

• kwargs (dictionary) – Keyword arguments for associated function.

Returns Column names and item list as a pair.

Return type tuple

command.show Contains command classes producing key-value pairs to output.

class lmi.scripts.common.command.show.LmiShowInstance(*args, **kwargs)
End point command producing a list of properties of particular CIM instance. Either reduced list of properties to
print can be specified, or the associated function alone can decide, which properties shall be printed. Associated
function is expected to return CIM instance as a result.

List of additional recognized properties:

DYNAMIC_PROPERTIES [bool] A boolean saying, whether the associated function alone shall
specify the list of properties of rendered instance. If True, the result of function must be a pair:

(props, inst)

Where props is the same value as can be passed to PROPERTIES property. Defaults to False.

PROPERTIES [tuple] May contain list of instance properties, that will be produced in the same
order as output. Each item of list can be either:

name [str] Name of property to render.

pair [tuple] A tuple (Name, render_func), where former item an arbitraty
name for rendered value and the latter is a function taking as the only argument
particular instance and returning value to render.

DYNAMIC_PROPERTIES and PROPERTIES are mutually exclusive. If none is given, all instance properties
will be printed.

Using metaclass: ShowInstanceMetaClass.

classmethod render(_self, inst)
Return tuple of (column_names, values) ready for output by formatter.

take_action(connection, args, kwargs)
Process single connection to a host, render result and return a value to render.

Returns List of pairs, where the first item is a label and second a value to render.

Return type list

command.util Utility functions used in command sub-package.

lmi.scripts.common.command.util.RE_COMMAND_NAME = <_sre.SRE_Pattern object at 0x7f174b293cd8>
Command name can also be a single or double dash.

lmi.scripts.common.command.util.RE_OPT_BRACKET_ARGUMENT = <_sre.SRE_Pattern object at 0x7f1748bd4030>
Regular expression matching bracket argument such as <arg_name>.

lmi.scripts.common.command.util.RE_OPT_LONG_OPTION = <_sre.SRE_Pattern object at 0x7f1749aa7770>
Regular expression matching long options (prefixed with double dash).

3.1. OpenLMI client components 151

OpenLMI Documentation, Release latest

lmi.scripts.common.command.util.RE_OPT_SHORT_OPTION = <_sre.SRE_Pattern object at 0x7f1749083500>
Regular expression matching showt options. They are one character long, prefixed with single dash.

lmi.scripts.common.command.util.RE_OPT_UPPER_ARGUMENT = <_sre.SRE_Pattern object at 0x7f1748bcd030>
Regular expression matching argument written in upper case such as ARG_NAME.

lmi.scripts.common.command.util.get_module_name(frame_level=2)
Get a module name of caller from particular outer frame.

Parameters frame_level (integer) – Number of nested frames to skip when searching for called
function scope by inspecting stack upwards. When the result of this function is applied directly
on the definition of function, it’s value should be 1. When used from inside of some other
factory, it must be increased by 1.

Level 0 returns name of this module. Level 1 returns module name of caller. Level 2 returns
module name of caller’s caller.

Returns Module name.

Return type string

lmi.scripts.common.command.util.is_abstract_method(clss, method, miss-
ing_is_abstract=False)

Check, whether the given method is abstract in given class or list of classes. May be used to check, whether
we should override particular abstract method in a meta-class in case that no non-abstract implementation is
defined.

Parameters

• clss (type or tuple) – Class or list of classes that is searched for non-abstract implementation
of particular method. If the first class having particular method in this list contain non-
abstract implementation, False is returned.

• method (string) – Name of method to look for.

• missing_is_abstract (boolean) – This is a value returned, when not such method is defined
in a set of given classes.

Returns Are all occurences of given method abstract?

Return type boolean

configuration Module for Configuration class.

class lmi.scripts.common.configuration.Configuration(user_config_file_path=’~/.lmirc’,
**kwargs)

Configuration class specific to software providers. OpenLMI configuration file should reside in:

/etc/openlmi/scripts/lmi.conf

Parameters user_config_file_path (string) – Path to the user configuration options.

classmethod default_options()

Returns Dictionary of default values.

Return type dictionary

history_file
Path to a file with history of interactive mode.

history_max_length
Maximum number of lines kept in history file.

152 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

human_friendly
Whether to print human-friendly values.

lister_format

Output format used for lister commands. Returns one of

• LISTER_FORMAT_CSV

• LISTER_FORMAT_TABLE

Return type integer

load()
Read additional user configuration file if it exists.

log_file
Path to a file, where logging messages shall be written.

no_headings
Whether to print headings of tables.

silent
Whether to suppress all output messages except for errors.

trace
Whether the tracebacks shall be printed upon errors.

verbose
Whether to output more details.

verbosity
Return integer indicating verbosity level of output to console.

verify_server_cert
Return boolean saying, whether the server-side certificate should be checked.

lmi.scripts.common.configuration.DEFAULT_FORMAT_STRING = ‘%(cseq)s%(levelname_)-8s:%(creset)s %(message)s’
Default format string to use in stderr handlers.

errors Module with predefined exceptions for use in scripts.

exception lmi.scripts.common.errors.LmiBadSelectExpression(module_name,
class_name, expr)

Raised, when expression of LmiSelectCommand could not be evaluated.

exception lmi.scripts.common.errors.LmiCommandError(module_name, class_name, msg)
Generic exception related to command declaration.

exception lmi.scripts.common.errors.LmiCommandImportError(cmd_name, cmd_path, rea-
son)

Exception raised when command can not be imported.

exception lmi.scripts.common.errors.LmiCommandInvalidCallable(module_name,
class_name, msg)

Raised, when given callback is not callable.

exception lmi.scripts.common.errors.LmiCommandInvalidName(module_name, class_name,
cmd_name)

Raised, when command gets invalid name.

3.1. OpenLMI client components 153

OpenLMI Documentation, Release latest

exception lmi.scripts.common.errors.LmiCommandInvalidProperty(module_name,
class_name, msg)

Raised, when any command property contains unexpected value.

exception lmi.scripts.common.errors.LmiCommandMissingCallable(module_name,
class_name)

Raised, when command declaration is missing callable object.

exception lmi.scripts.common.errors.LmiCommandNotFound(cmd_name)
Raised, when user requests not registered command.

exception lmi.scripts.common.errors.LmiError
The base Lmi scripts error. All the other exceptions inherit from it.

exception lmi.scripts.common.errors.LmiFailed
Raised, when operation on remote host failes. It’s supposed to be used especially in command libraries.

exception lmi.scripts.common.errors.LmiImportCallableFailed(module_name,
class_name,
callable_prop)

Raised, when callable object of command could not be imported.

exception lmi.scripts.common.errors.LmiInvalidOptions
Raised in verify_options() method if the options given are not valid.

exception lmi.scripts.common.errors.LmiNoConnections
Raised, when no connection to remote hosts could be made.

exception lmi.scripts.common.errors.LmiTerminate(exit_code=0)
Raised to cleanly terminate interavtive shell.

exception lmi.scripts.common.errors.LmiUnexpectedResult(command_class, expected, re-
sult)

Raised, when command’s associated function returns something unexpected.

exception lmi.scripts.common.errors.LmiUnsatisfiedDependencies(uris)
Raised when no guarded command in LmiSelectCommand can be loaded due to unsatisfied requirements.

formatter Subpackage with formatter classes used to render and output results.

Each formatter has a Formatter.produce_output() method taking one argument which gets rendered and
printed to output stream. Each formatter expects different argument, please refer to doc string of particular class.

class lmi.scripts.common.formatter.CsvFormatter(stream, padding=0, no_headings=False)
Renders data in a csv (Comma-separated values) format.

This formatter supports following commands:

• NewHostCommand

• NewTableCommand

• NewTableHeaderCommand

class lmi.scripts.common.formatter.ErrorFormatter(stream, padding=4)

Render error strings for particular host. Supported commands:

• NewHostCommand

class lmi.scripts.common.formatter.Formatter(stream, padding=0, no_headings=False)
Base formatter class.

It produces string representation of given argument and prints it.

154 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

This formatter supports following commands:

•NewHostCommand.

Parameters

• stream (file) – Output stream.

• padding (integer) – Number of leading spaces to print at each line.

• no_headings (boolean) – If table headings should be omitted.

encoding
Try to determine encoding for output terminal.

Returns Encoding used to encode unicode strings.

Return type string

host_counter = None
counter of hosts printed

line_counter = None
counter of lines producted for current table

print_host(hostname)
Prints header for new host.

Parameters hostname (string) – Hostname to print.

print_line(line, *args, **kwargs)
Prints single line. Output message is prefixed with padding spaces, formated and printed to output
stream.

Parameters

• line (string) – Message to print, it can contain markers for other arguments to include
according to format_spec language. Please refer to Format Specification
Mini-Language in python documentation.

• args (list) – Positional arguments to format() function of line argument.

• kwargs (dictionary) – Keyword arguments to format() function.

produce_output(data)
Render and print given data.

Data can be also instance of FormatterCommand, see documentation of this class for list of allowed
commands.

This shall be overridden by subclasses.

Parameters data – Any value to print. Subclasses may specify their requirements for this argu-
ment. It can be also am instance of FormatterCommand.

render_value(val)
Rendering function for single value.

Parameters val – Any value to render.

Returns Value converted to its string representation.

Return type str

table_counter = None
counter of tables produced for current host

3.1. OpenLMI client components 155

OpenLMI Documentation, Release latest

class lmi.scripts.common.formatter.ListFormatter(stream, padding=0,
no_headings=False)

Base formatter taking care of list of items. It renders input data in a form of table with mandatory column names
at the beginning followed by items, one occupying single line (row).

This formatter supports following commands:

• NewHostCommand

• NewTableCommand

• NewTableHeaderCommand

The command must be provided as content of one row. This row is then not printed and the command is
executed.

This class should be subclassed to provide nice output.

print_header()
Print table header.

print_row(data)
Print data row. Optionaly print header, if requested.

Parameters data (tuple) – Data to print.

print_table_title(title)
Prints title of next tale.

Parameters title (string) – Title to print.

print_text_row(row)
Print data row without any header.

Parameters row (tuple) – Data to print.

produce_output(rows)
Prints list of rows.

There can be a FormatterCommand instance instead of a row. See documentation of this class for list
of allowed commands.

Parameters rows (list, generator or command.FormatterCommand) – List of rows to print.

class lmi.scripts.common.formatter.ShellFormatter(stream, padding=0,
no_headings=False)

Specialization of SingleFormatter having its output executable as a shell script.

This formatter supports following commands:

• NewHostCommand

class lmi.scripts.common.formatter.SingleFormatter(stream, padding=0,
no_headings=False)

Meant to render and print attributes of single object. Attributes are rendered as a list of assignments of values to
variables (attribute names).

This formatter supports following commands:

• NewHostCommand

produce_output(data)
Render and print attributes of single item.

There can be a FormatterCommand instance instead of a data. See documentation of this class for list
of allowed commands.

156 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Parameters data (tuple or dict) – Is either a pair of property names with list of values or a
dictionary with property names as keys. Using the pair allows to order the data the way it
should be printing. In the latter case the properties will be sorted by the property names.

class lmi.scripts.common.formatter.TableFormatter(stream, padding=0,
no_headings=False,
min_column_sizes=False)

Print nice human-readable table to terminal.

To print the table nicely aligned, the whole table must be populated first. Therefore this formatter stores all rows
locally and does not print them until the table is complete. Column sizes are computed afterwards and the table
is printed at once.

This formatter supports following commands:

• NewHostCommand

• NewTableCommand

• NewTableHeaderCommand

The command must be provided as content of one row. This row is then not printed and the command is
executed.

Parameters min_column_sizes (dictionary) – Dictionary of minimal column sizes, where keys are
column numbers starting from 0, and values are minimal column sizes.

print_host(hostname)
Prints header for new host.

Parameters hostname (string) – Hostname to print.

print_row(data)
Print data row.

Parameters data (tuple) – Data to print.

print_table_title(title)
Prints title of next tale.

Parameters title (string) – Title to print.

produce_output(rows)
Prints list of rows.

There can be FormatterCommand instance instead of a row. See documentation of this class for list of
allowed commands.

Parameters rows (list or generator) – List of rows to print.

lmi.scripts.common.formatter.get_terminal_width()
Get the number of columns of current terminal if attached to it. It defaults to 79 characters.

Returns Number of columns of attached terminal.

Return type integer

formatter.command Contains command classes used to control formatters from inside of command execution func-
tions.

class lmi.scripts.common.formatter.command.FormatterCommand
Base class for formatter commands.

3.1. OpenLMI client components 157

OpenLMI Documentation, Release latest

class lmi.scripts.common.formatter.command.NewHostCommand(hostname)
Command for formatter to finish current table (if any), print header for new host and (if there are any data) print
table header.

Parameters hostname (string) – Name of host appearing at the front of new table.

class lmi.scripts.common.formatter.command.NewTableCommand(title=None)
Command for formatter to finish current table (if any), print the title and (if there are any data) print table header.

Parameters title (string) – Optional title for new table.

class lmi.scripts.common.formatter.command.NewTableHeaderCommand(columns=None)
Command for formatter to finish current table (if any), store new table header and (if there are any data) print
the table header. The table header will be printed in all subsequent tables, until new instance of this class arrives.

Parameters columns (tuple) – Array of column names.

lmi_logging Utilities for logging framework.

lmi.scripts.common.lmi_logging.LOG_LEVEL_2_COLOR = {40: 9, 50: 13, 30: 11}
Dictionary assigning color code to logging level.

class lmi.scripts.common.lmi_logging.LevelDispatchingFormatter(formatters,
default=’%(cseq)s%(levelname_)-
8s:%(creset)s
%(message)s’,
datefmt=None)

Formatter class for logging module. It allows to predefine different format string used for some level ranges.

Parameters

• formatters (dict) – Mapping of module names to format. It is a dictionary of following
format:

{ max_level1 : format1
, max_level2 : format2
, ... }

format in parameters description can be either string or another formatter object.

For example if you want to have format3 used for ERROR and CRITICAL levels, format2
for INFO and format1 for anything else, your dictionary will look like this:

{ logging.INFO - 1 : format1
, logging.INFO : format2 }

And the default value should have format3 assigned.

• default – Default format to use. This format is used for all levels higher than the maximum
of formatters‘ keys.

format(record)
Interface for logging module.

class lmi.scripts.common.lmi_logging.LogRecord(name, level, *args, **kwargs)
Overrides logging.LogRecord. It adds new attributes:

•levelname_ - Name of level in lowercase.

•cseq - Escape sequence for terminal used to set color assigned to particular log level.

•creset - Escape sequence for terminal used to reset foreground color.

158 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

These can be used in format strings initializing logging formatters.

Accepts the same arguments as base class.

lmi.scripts.common.lmi_logging.get_color_sequence(color_code)
Computer color sequence for particular color code.

Returns Escape sequence for terminal used to set foreground color.

Return type str

lmi.scripts.common.lmi_logging.get_logger(module_name)
Convenience function for getting callable returning logger for particular module name. It’s supposed to be used
at module’s level to assign its result to global variable like this:

from lmi.scripts import common

LOG = common.get_logger(__name__)

This can be used in module’s functions and classes like this:

def module_function(param):
LOG().debug("This is debug statement logging param: %s", param)

Thanks to LOG being a callable, it always returns valid logger object with current configuration, which may
change overtime.

Parameters module_name (string) – Absolute dotted module path.

Return type logging.Logger

lmi.scripts.common.lmi_logging.setup_logger(use_colors=True)
This needs to be called before any logging takes place.

session Module for session object representing all connection to remote hosts.

class lmi.scripts.common.session.Session(app, hosts, credentials=None,
same_credentials=False)

Session object keeps connection objects to remote hosts. Their are associated with particular hostnames. It
also caches credentials for them. Connections are made as they are needed. When credentials are missing for
connection to be made, the user is asked to supply them from standard input.

Parameters

• app – Instance of main application.

• hosts (list) – List of hostname strings.

• credentials (dictionary) – Mapping assigning a pair (user, password) to each host-
name.

• same_credentials (boolean) – Use the same credentials for all hosts in session. The first
credentials given will be used.

get_credentials(hostname)

Parameters hostname (string) – Name of host to get credentials for.

Returns Pair of (username, password) for given hostname. If no credentials were given
for this host, (’’, ’’) is returned.

Return type tuple

get_unconnected()

3.1. OpenLMI client components 159

OpenLMI Documentation, Release latest

Returns List of hostnames, which do not have associated connection yet.

Return type list

hostnames
List of hostnames in session.

Return type list

class lmi.scripts.common.session.SessionProxy(session, uris)
Behaves like a session. But it just encapsulates other session object and provides access to a subset of its items.

Parameters

• session – Session object or even another session proxy.

• uris (list) – Subset of uris in encapsulated session object.

util Various utilities for LMI Scripts.

class lmi.scripts.common.util.FilteredDict(key_filter, original=None)
Dictionary-like collection that wraps some other dictionary and provides limited access to its keys and values.
It permits to get, delete and set items specified in advance.

Note: Please use only the methods overriden. This class does not guarantee 100% API compliance. Not
overriden methods won’t work properly.

Parameters

• key_filter (list) – Set of keys that can be get, set or deleted. For other keys, KeyError will
be raised.

• original (dictionary) – Original dictionary containing not only keys in key_filter but others
as well. All modifying operations operate also on this dictionary. But only those keys in
key_filter can be affected by them.

versioncheck Package with utilities for checking availability of profiles or CIM classes. Version requirements can
also be specified.

lmi.scripts.common.versioncheck.cmp_profiles(fst, snd)
Compare two profiles by their version.

Returns

• -1 if the fst profile has lower version than snd

• 0 if their versions are equal

• 1 otherwise

Return type int

lmi.scripts.common.versioncheck.eval_respl(expr, conn, namespace=None, cache=None)
Evaluate LMIReSpL expression on particular broker.

Parameters

• expr (string) – Expression to evaluate.

• conn – Connection object.

• namespace (string) – Optional CIM namespace where CIM classes will be searched.

160 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• cache (dictionary) – Optional cache speeding up evaluation.

Returns True if requirements in expression are satisfied.

Return type boolean

lmi.scripts.common.versioncheck.get_class_version(conn, name, namespace=None,
cache=None)

Query broker for version of particular CIM class. Version is stored in Version qualifier of particular CIM
class.

Parameters

• conn – Connection object.

• name (string) – Name of class to query.

• namespace (string) – Optional CIM namespace. Defaults to configured namespace.

• cache (dictionary) – Optional cache used to speed up expression prrocessing.

Returns Version of CIM matching class. Empty string if class is registered but is missing Version
qualifier and None if it is not registered.

Return type string

lmi.scripts.common.versioncheck.get_profile_version(conn, name, cache=None)
Get version of registered profile on particular broker. Queries CIM_RegisteredProfile and
CIM_RegisteredSubProfile. The latter comes in question only when CIM_RegisteredProfile
does not yield any matching result.

Parameters

• conn – Connection object.

• name (string) – Name of the profile which must match value of RegisteredName property.

• cache (dictionary) – Optional cache where the result will be stored for later use. This greatly
speeds up evaluation of several expressions refering to same profiles or classes.

Returns Version of matching profile found. If there were more of them, the highest version will be
returned. None will be returned when no matching profile or subprofile is found.

Return type string

versioncheck.parser Parser for mini-language specifying profile and class requirements. We call the language
LMIReSpL (openLMI Requirement Specification Language).

The only thing designed for use outside this module is bnf_parser().

Language is generated by BNF grammer which served as a model for parser.

Formal representation of BNF grammer is following:

expr ::= term [op expr]*
term ::= ’!’? req
req ::= profile_cond | clsreq_cond | ’(’ expr ’)’
profile_cond ::= ’profile’? [profile | profile_quot] cond?
clsreq_cond ::= ’class’ [clsname | clsname_quot] cond?
profile_quot ::= ’"’ /\w+[+.a-zA-Z0-9_-]*/ ’"’
profile ::= /\w+[+.a-zA-Z_-]*/
clsname_quot ::= ’"’ clsname ’"’
clsname ::= /[a-zA-Z]+_[a-zA-Z][a-zA-Z0-9_]*/
cond ::= cmpop version
cmpop ::= /(<|=|>|!)=|<|>/

3.1. OpenLMI client components 161

OpenLMI Documentation, Release latest

version ::= /[0-9]+(\.[0-9]+)*/
op ::= ’&’ | ’|’

String surrounded by quotes is a literal. String enclosed with slashes is a regular expression. Square brackets encloses
a group of words and limit the scope of some operation (like iteration).

class lmi.scripts.common.versioncheck.parser.And(fst, snd)
Represents logical AND of two expressions. Short-circuit evaluation is being exploited here.

Parameters

• fst – An object of Term non-terminal.

• snd – An object of Term non-terminal.

class lmi.scripts.common.versioncheck.parser.Expr(term)
Initial non-terminal. Object of this class (or one of its subclasses) is a result of parsing.

Parameters term – An object of Term non-terminal.

lmi.scripts.common.versioncheck.parser.OP_MAP = {‘>=’: (<built-in function ge>, <built-in function all>), ‘==’: (<built-in function eq>, <built-in function all>), ‘<=’: (<built-in function le>, <built-in function all>), ‘!=’: (<built-in function ne>, <built-in function any>), ‘<’: (<built-in function lt>, <built-in function any>), ‘>’: (<built-in function gt>, <built-in function any>)}
Dictionary mapping supported comparison operators to a pair. First item is a function making the comparison
and the second can be of two values (all or any). Former sayes that each part of first version string must be
in relation to corresponding part of second version string in order to satisfy the condition. The latter causes the
comparison to end on first satisfied part.

class lmi.scripts.common.versioncheck.parser.Or(fst, snd)
Represents logical OR of two expressions. Short-circuit evaluation is being exploited here.

Parameters

• fst – An object of Term non-terminal.

• snd – An object of Term non-terminal.

class lmi.scripts.common.versioncheck.parser.Req
Represents one of following subexpressions:

•single requirement on particular profile

•single requirement on particular class

•a subexpression

class lmi.scripts.common.versioncheck.parser.ReqCond(kind, version_getter, name,
cond=None)

Represents single requirement on particular class or profile.

Parameters

• kind (str) – Name identifying kind of thing this belongs. For example ’class’ or
’profile’.

• version_getter (callable) – Is a function called to get version of either profile or CIM
class. It must return corresponding version string if the profile or class is registered
and None otherwise. Version string is read from RegisteredVersion property of
CIM_RegisteredProfile. If a class is being queried, version shall be taken from
Version qualifier of given class.

• name (str) – Name of profile or CIM class to check for. In case of a profile, it is compared
to RegisteredName property of CIM_RegisteredProfile. If any instance of this
class has matching name, it’s version will be checked. If no matching instance is found,
instances of CIM_RegisteredSubProfile are queried the same way. Failing to find
it results in False.

162 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• cond (str) – Is a version requirement. Check the grammer above for cond non-terminal.

class lmi.scripts.common.versioncheck.parser.SemanticGroup
Base class for non-terminals. Just a minimal set of non-terminals is represented by objects the rest is represented
by strings.

All subclasses need to define their own evaluate() method. The parser builds a tree of these non-terminals
with single non-terminal being a root node. This node’s evaluate method returns a boolean saying whether the
condition is satisfied. Root node is always an object of Expr.

evaluate()

Returns True if the sub-condition represented by this non-terminal is satisfied.

Return type boolean

class lmi.scripts.common.versioncheck.parser.Subexpr(expr)
Represents a subexpression originally enclosed in brackets.

class lmi.scripts.common.versioncheck.parser.Term(req, negate)
Represents possible negation of expression.

Parameters

• req – An object of Req.

• negate (boolean) – Whether the result of children shall be negated.

class lmi.scripts.common.versioncheck.parser.TreeBuilder(stack, profile_version_getter,
class_version_getter)

A stack interface for parser. It defines methods modifying the stack with additional checks.

expr(strg, loc, toks)
Operates upon a stack. It takes either one or two terms there and makes an expression object out of them.
Terms need to be delimited with logical operator.

push_class(strg, loc, toks)
Handles clsreq_cond non-terminal in one go. It extracts corresponding tokens and pushes an object of
ReqCond to a stack.

push_literal(strg, loc, toks)
Pushes operators to a stack.

push_profile(strg, loc, toks)
Handles profile_cond non-terminal in one go. It behaves in the same way as push_profile().

subexpr(strg, loc, toks)
Operates upon a stack. It creates an instance of Subexpr out of Expr which is enclosed in brackets.

term(strg, loc, toks)
Creates a term out of requirement (req non-terminal).

lmi.scripts.common.versioncheck.parser.bnf_parser(stack, profile_version_getter,
class_version_getter)

Builds a parser operating on provided stack.

Parameters

• stack (list) – Stack to operate on. It will contain the resulting Expr object when the parsing
is successfully over - it will be the only item in the list. It needs to be initially empty.

• profile_version_getter (callable) – Function returning version of registered profile or None
if not present.

3.1. OpenLMI client components 163

OpenLMI Documentation, Release latest

• class_version_getter (callable) – Fucntion returning version of registered class or None if
not present.

Returns Parser object.

Return type pyparsing,ParserElement

lmi.scripts.common.versioncheck.parser.cmp_version(fst, snd, opsign=’<’)
Compare two version specifications. Each version string shall contain digits delimited with dots. Empty string
is also valid version. It will be replaced with -1.

Parameters

• fst (str) – First version string.

• snd (str) – Second version string.

• opsign (str) – Sign denoting operation to be used. Supported signs are present in OP_MAP.

Returns True if the relation denoted by particular operation exists between two operands.

Return type boolean

Account Script python reference

LMI account provider client library.

This set of functions can create, modify and delete users and groups on a remote managed system.

lmi.scripts.account.add_to_group(ns, group, users)
Add users to a group.

Parameters

• group (LMIInstance or LMIInstanceName of LMI_Group.) – The group.

• users (List (or generator) of LMIInstances or LMIInstanceNames of LMI_Account.) – Users
to add.

lmi.scripts.account.create_group(ns, group, reserved=False, gid=None)
Create a new group on the system.

Parameters

• group (string) – Name of the group.

• reserved (boolean) – Whether the group is a system one (its GID will be allocated lower
than system-defined threshold).

• gid (int) – Required GID. It will be allocated automatically if it’s None.

Return type LMIInstanceName of the created group.

Returns Created group.

lmi.scripts.account.create_user(ns, name, gecos=None, home=None, create_home=True,
shell=None, uid=None, gid=None, create_group=True, re-
served=False, password=None, plain_password=False)

Create a new user.

Parameters

• name (string) – Name of the user.

• gecos (string) – GECOS information of the new user.

164 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• home (string) – Home directory.

• create_home (boolean) – True, if home directory should be automatically created.

• shell (string) – User’s shell.

• uid (int) – Desired UID. If None, system will allocate a free one.

• gid (int) – Desired GID. If None, system will allocate a free one.

• create_group (boolean) – True, if user’s private group should be created.

• reserved (boolean) – True, if the account is system one, i.e. it’s UID will be allocated in
system account space (below system defined threshold). (default=False, the account is an
user).

• password (string) – User password.

• plain_password (boolean) – True, if the provided password is plain text string, False if it is
already hashed by crypt().

Return type LMIInstanceName

Returns Created used.

lmi.scripts.account.delete_group(ns, group)
Delete a group.

Parameters group (LMIInstance or LMIInstanceName of LMI_Group.) – The group to delete.

lmi.scripts.account.delete_user(ns, user, no_delete_group=False, no_delete_home=False,
force=False)

Delete a user.

Parameters

• user (LMIInstance or LMIInstanceName of LMI_Account.) – User to delete.

• no_delete_group (boolean) – True, if the user’s private group should be preserved. (default
= False, the group is deleted).

• no_delete_home (boolean) – True, if user’s home directory should be preserved. (default =
False, home is deleted).

• force (boolean) – True, if the home directory should be remove even though the user is
not owner of the directory. (default = False, do not remove user’s home if it is owned by
someone else).

lmi.scripts.account.get_group(ns, groupname)
Return LMIInstance of the group. This function raises LmiFailed if the user is not found.

Parameters groupname (string) – Name of the group.

Return type LMIInstance of LMI_Group

Returns The group.

lmi.scripts.account.get_user(ns, username)
Return LMIInstance of the user. This function raises LmiFailed if the user is not found.

Parameters username (string) – Name of the user.

Return type LMIInstance of LMI_Account

Returns The user.

lmi.scripts.account.get_users_in_group(ns, group)
Yields users in given group.

3.1. OpenLMI client components 165

OpenLMI Documentation, Release latest

Parameters group (LMIInstance or LMIInstanceName of LMI_Group.) – The group to inspect.

Returns Generator of LMIInstances of LMI_Account.

lmi.scripts.account.is_in_group(group, user)
Return True if user is in group

Parameters

• group (LMIInstance or LMIInstanceName of LMI_Group.) – The group.

• user (LMIInstance or LMIInstanceName of LMI_Account.) – User to check.

lmi.scripts.account.list_groups(ns)
Yield all groups on the system.

Return type generator of LMIInstances.

lmi.scripts.account.list_users(ns)
Yield all users on the system.

Return type generator of LMIInstances.

lmi.scripts.account.remove_from_group(ns, group, users)
Remove users from a group.

Parameters

• group (LMIInstance or LMIInstanceName of LMI_Group.) – The group.

• users (List (or generator) of LMIInstances or LMIInstanceNames of LMI_Account.) – Users
to remove.

Hardware Script python reference

Main interface functions wrapped with lmi commands are:

• get_all_info()

• get_system_info()

• get_motherboard_info()

• get_cpu_info()

• get_memory_info()

• get_disks_info()

All of these accept NS (namespace) object as the first argument, an instance of lmi.shell.LMINamespace.

Hardware Module API LMI hardware provider client library.

lmi.scripts.hardware.format_memory_size(size)
Returns formatted memory size.

Parameters size (Number) – Size in bytes

Returns Formatted size string.

Return type String

lmi.scripts.hardware.get_all_info(ns)

Returns Tabular data of all available info.

166 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Return type List of tuples

lmi.scripts.hardware.get_all_instances(ns, class_name)
Returns all instances of instance_name.

Parameters instance_name (String) – Instance name

Returns List of instances of instance_name

Return type List of lmi.shell.LMIInstance

lmi.scripts.hardware.get_colored_string(msg, color)
Returns colored message with ANSI escape sequences for terminal.

Parameters

• msg (String) – Message to be colored.

• color (Integer) – Color of the message [GREEN_COLOR, YELLOW_COLOR,
RED_COLOR].

Returns Colored message.

Return type String

lmi.scripts.hardware.get_cpu_info(ns)

Returns Tabular data of processor info.

Return type List of tuples

lmi.scripts.hardware.get_disks_info(ns)

Returns Tabular data of disk info.

Return type List of tuples

lmi.scripts.hardware.get_hostname(ns)

Returns Tabular data of system hostname.

Return type List of tuples

lmi.scripts.hardware.get_memory_info(ns)

Returns Tabular data of memory info.

Return type List of tuples

lmi.scripts.hardware.get_motherboard_info(ns)

Returns Tabular data of motherboard info.

Return type List of tuples

lmi.scripts.hardware.get_single_instance(ns, class_name)
Returns single instance of instance_name.

Parameters instance_name (String) – Instance name

Returns Instance of instance_name

Return type lmi.shell.LMIInstance

lmi.scripts.hardware.get_system_info(ns)

Returns Tabular data of system info, from the LMI_Chassis instance.

Return type List of tuples

3.1. OpenLMI client components 167

OpenLMI Documentation, Release latest

Journald Script python reference

Journald Module API
lmi.scripts.journald.list_messages(ns, reverse=False, tail=False)

List messages from the journal.

Parameters

• reverse (boolean) – List messages from newest to oldest.

• tail (boolean) – List only the last 50 messages
lmi.scripts.journald.log_message(ns, message)

Logs a new message in the journal.

Parameters message (string) – A message to log.

lmi.scripts.journald.watch(ns)
Sets up a new indication listener and waits for events.

Locale Script python reference

LMI Locale Provider client library.

lmi.scripts.locale.get_locale(ns)
Get locale.

Return type LMIInstance/LMI_Locale

lmi.scripts.locale.set_locale(ns, locales, values)
Set given locale variables with new values.

Parameters

• locales (list) – List of locale variable names to be set.

• values (list) – List of new values for locale variables.

lmi.scripts.locale.set_vc_keyboard(ns, keymap, keymap_toggle, convert)
Set the key mapping on the virtual console.

Parameters

• keymap (string) – Requested keyboard mapping for the virtual console.

• keymap_toggle (string) – Requested toggle keyboard mapping for the virtual console.

• convert (bool) – Whether also X11 keyboard should be set to the nearest X11 keyboard
setting for the chosen console keyboard setting.

lmi.scripts.locale.set_x11_keymap(ns, layouts, model, variant, options, convert)
Set the default key mapping of the X11 server.

Parameters

• layouts (string) – Requested X11 keyboard mappings.

• model (string) – Requested X11 keyboard model.

• variant (string) – Requested X11 keyboard variant.

• options (string) – Requested X11 keyboard options.

• convert (bool) – Whether also console keyboard should be set to the nearest console key-
board setting for the chosen X11 keyboard setting.

168 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Logical File Script python reference

Logicalfile management functions.

lmi.scripts.logicalfile.logicalfile.get_directory_instance(ns, directory)
Retrieve LMIInstance of a directory.

Parameters directory (string) – Full path to the directory.

Return type LMIInstance

lmi.scripts.logicalfile.logicalfile.get_directory_name_properties(ns, direc-
tory)

Retrieve object path of a directory.

Parameters directory (string) – Full path to the directory.

Return type LMIInstanceName

lmi.scripts.logicalfile.logicalfile.get_file_identification(file_instance)
Retrieve file identification.

Parameters file_instance (LMIInstance) – The file’s instance object.

Return type string

lmi.scripts.logicalfile.logicalfile.lf_createdir(ns, directory)
Create a directory.

The parent directory must exist.

Parameters directory (string) – Full path to the directory.

lmi.scripts.logicalfile.logicalfile.lf_deletedir(ns, directory)
Delete a directory.

The directory must be empty.

Parameters directory (string) – Full path to the directory.

lmi.scripts.logicalfile.logicalfile.lf_list(ns, directory, depth=None)
List all files in a directory.

If depth is positive, directory is walked recursively up to the given depth.

Parameters

• directory (string) – Full path to the directory.

• depth (integer) – Maximum depth to be recursed to.

lmi.scripts.logicalfile.logicalfile.lf_show(ns, target)
Show detailed information about the target.

Target can be either a file or a directory.

Parameters target (string) – Full path to the target.

lmi.scripts.logicalfile.logicalfile.walk_cim_directory(directory, depth=0)
Retrieve all files in a directory.

If depth is positive, directory is walked recursively up to the given depth. Files and directories are yielded as
they are encountered. This function does not return, it is a generator.

Parameters

• directory (string) – Full path to the directory.

3.1. OpenLMI client components 169

OpenLMI Documentation, Release latest

• depth (integer) – Maximum depth to be recursed to.

Networking Script python reference

Main interface functions wrapped with lmi commands are:

• get_device_by_name()

• get_setting_by_caption()

• list_devices()

• list_settings()

• get_mac()

• get_ip_addresses()

• get_default_gateways()

• get_dns_servers()

• get_available_settings()

• get_active_settings()

• get_setting_type()

• get_setting_ip4_method()

• get_setting_ip6_method()

• get_sub_setting()

• get_applicable_devices()

• activate()

• deactivate()

• create_setting()

• delete_setting()

• add_ip_address()

• remove_ip_address()

• replace_ip_address()

All of these accept NS object as the first argument. It is an instance of lmi.shell.LMINamespace.

Networking Module API LMI networking provider client library.

lmi.scripts.networking.SETTING_IP_METHOD_DHCP = 4
IP configuration obtained from DHCP server

lmi.scripts.networking.SETTING_IP_METHOD_DHCPv6 = 7
IP configuration obtained from DHCPv6 server

lmi.scripts.networking.SETTING_IP_METHOD_DISABLED = 0
Disabled IP configuration

lmi.scripts.networking.SETTING_IP_METHOD_STATELESS = 9
Stateless IPv6 configuration

170 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

lmi.scripts.networking.SETTING_IP_METHOD_STATIC = 3
Static IP address configuration

lmi.scripts.networking.SETTING_TYPE_BOND_MASTER = 4
Configuration for bond master

lmi.scripts.networking.SETTING_TYPE_BOND_SLAVE = 40
Configuration for bond slave

lmi.scripts.networking.SETTING_TYPE_BRIDGE_MASTER = 5
Configuration for bridge master

lmi.scripts.networking.SETTING_TYPE_BRIDGE_SLAVE = 50
Configuration for bridge slave

lmi.scripts.networking.SETTING_TYPE_ETHERNET = 1
Configuration for ethernet

lmi.scripts.networking.SETTING_TYPE_UNKNOWN = 0
Unknown type of setting

lmi.scripts.networking.activate(ns, setting, device=None)
Activate network setting on given device

Parameters

• setting (LMI_IPAssignmentSettingData) – Setting to be activated.

• device (LMI_IPNetworkConnection or None) – Device to activate the setting on or None for
autodetection

lmi.scripts.networking.add_dns_server(ns, setting, address)
Add a dns server to the given setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

lmi.scripts.networking.add_ip_address(ns, setting, address, prefix, gateway=None)
Add an IP address to the given static setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

• prefix (int) – network prefix.

• gateway (str or None) – default gateway or None

lmi.scripts.networking.add_static_route(ns, setting, address, prefix, metric=None,
next_hop=None)

Add a static route to the given setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

• prefix (int) – network prefix.

• metric – metric for the route or None

• next_hop (str or None) – IPv4 or IPv6 address for the next hop of the route or None

3.1. OpenLMI client components 171

OpenLMI Documentation, Release latest

lmi.scripts.networking.create_setting(ns, caption, device, type, ipv4method, ipv6method)
Create new network setting.

Parameters

• caption (str) – Caption for the new setting.

• device (LMI_IPNetworkConnection) – Device for which the setting will be.

• type (SETTING_TYPE_* constant) – Type of the setting.

• ipv4method (SETTING_IP_METHOD_* constant) – Method for obtaining IPv4 address.

• ipv4method – Method for obtaining IPv6 address.

lmi.scripts.networking.deactivate(ns, setting, device=None)
Deactivate network setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – Setting to deactivate.

• device (LMI_IPNetworkConnection or None) – Device to deactivate the setting on

lmi.scripts.networking.delete_setting(ns, setting)
Delete existing network setting.

Parameters setting (LMI_IPAssignmentSettingData) – network setting.

lmi.scripts.networking.enslave(ns, master_setting, device)
Create slave setting of the master_setting with given device.

Parameters

• master_setting (LMI_IPAssignmentSettingData) – Master setting to use

• device (LMI_IPNetworkConnection) – Device to enslave

lmi.scripts.networking.get_active_settings(ns, device)
Get a list of settings that are currently active on the device

Parameters device (LMI_IPNetworkConnection) – network device

Returns Settings that are active on the device

Return type list of LMI_IPAssignmentSettingData

lmi.scripts.networking.get_applicable_devices(ns, setting)
Get list of network devices that this setting can be applied to.

Parameters setting (LMI_IPAssignmentSettingData) – network setting

Returns devices that the setting can be applied to

Return type list of LMI_IPNetworkConnection

lmi.scripts.networking.get_available_settings(ns, device)
Get a list of settings that can be applied to given device

Parameters device (LMI_IPNetworkConnection) – network device

Returns Settings applicable to the device

Return type list of LMI_IPAssignmentSettingData

lmi.scripts.networking.get_default_gateways(ns, device)
Get a list of default gateways assigned to given device

Parameters device (LMI_IPNetworkConnection) – network device

172 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Returns Default gateways assigned to the device

Return type list of str

lmi.scripts.networking.get_device_by_name(ns, device_name)
Get instance of LMI_IPNetworkConnection class by the device name.

Parameters device_name (str) – Name of the device.

Returns LMI_IPNetworkConnection representing the device.

Return type LMI_IPNetworkConnection or None if not found

lmi.scripts.networking.get_dns_servers(ns, device)
Get a list of DNS servers assigned to given device

Parameters device (LMI_IPNetworkConnection) – network device

Returns DNS servers assigned to the device

Return type list of str

lmi.scripts.networking.get_ip_addresses(ns, device)
Get a list of IP addresses assigned to given device

Parameters device (LMI_IPNetworkConnection) – network device

Returns IP addresses with subnet masks (IPv4) or prefixes (IPv6) that is assigned to the device.

Return type list of tuple (IPAddress, SubnetMask/Prefix)

lmi.scripts.networking.get_ipv4_addresses(ns, device)
Get a list of IPv4 addresses assigned to given device

Parameters device (LMI_IPNetworkConnection) – network device

Returns IPv4 addresses with subnet masks that is assigned to the device.

Return type list of tuple (IPAddress, SubnetMask)

lmi.scripts.networking.get_ipv6_addresses(ns, device)
Get a list of IPv6 addresses assigned to given device

Parameters device (LMI_IPNetworkConnection) – network device

Returns IPv6 addresses with prefixes that is assigned to the device.

Return type list of tuple (IPAddress, Prefix)

lmi.scripts.networking.get_mac(ns, device)
Get a MAC address for given device.

Parameters device (LMI_IPNetworkConnection) – network device

Returns MAC address of given device or 00:00:00:00:00:00 when no MAC is found.

Return type str

lmi.scripts.networking.get_setting_by_caption(ns, caption)
Get instance of LMI_IPAssignmentSettingData class by the caption.

Parameters caption (str) – Caption of the setting.

Returns LMI_IPAssignmentSettingData representing the setting.

Return type LMI_IPAssignmentSettingData or None if not found

lmi.scripts.networking.get_setting_ip4_method(ns, setting)
Get method of obtaining IPv4 configuration on given setting

3.1. OpenLMI client components 173

OpenLMI Documentation, Release latest

Parameters setting (LMI_IPAssignmentSettingData) – network setting

Returns IPv4 method

Return type SETTING_IP_METHOD_* constant

lmi.scripts.networking.get_setting_ip6_method(ns, setting)
Get method of obtaining IPv6 configuration on given setting

Parameters setting (LMI_IPAssignmentSettingData) – network setting

Returns IPv6 method

Return type SETTING_IP_METHOD_* constant

lmi.scripts.networking.get_setting_type(ns, setting)
Get type of the setting

Parameters setting (LMI_IPAssignmentSettingData) – network setting

Returns type of setting

Return type SETTING_TYPE_* constant

lmi.scripts.networking.get_static_routes(ns, setting)
Return list of static routes for given setting

Parameters setting (LMI_IPAssignmentSettingData) – network setting

Returns list of static routes

Return type list of LMI_IPRouteSettingData

lmi.scripts.networking.get_sub_setting(ns, setting)
Get list of detailed configuration setting for each part of the setting.

Parameters setting (LMI_IPAssignmentSettingData) – network setting

Returns detailed setting

Return type list of LMI_IPAssignmentSettingData subclasses

lmi.scripts.networking.is_setting_active(ns, setting)
Return true if the setting is currently active

Parameters setting (LMI_IPAssignmentSettingData) – network setting

Retval True setting is currently active

Retval False setting is not currently active

Return type bool

lmi.scripts.networking.list_devices(ns, device_names=None)
Get a list of network devices.

Parameters device_name (list of str) – List of device names that will be used as filter for devices.

Returns List of instances of LMI_IPNetworkConnection

Return type list of LMI_IPNetworkConnection

lmi.scripts.networking.list_settings(ns, captions=None)
Get a list of network settings.

Parameters captions (list of str) – List of setting captions that will be used as filter for settings.

Returns Settings that matches given captions

174 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Return type list of LMI_IPAssignmentSettingData

lmi.scripts.networking.remove_dns_server(ns, setting, address)
Remove dns server from given setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

lmi.scripts.networking.remove_ip_address(ns, setting, address)
Remove the IP address from given static setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

lmi.scripts.networking.remove_static_route(ns, setting, address)
Remove static route to the given setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

lmi.scripts.networking.replace_dns_server(ns, setting, address)
Remove all dns servers and add given dns server to the given setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

lmi.scripts.networking.replace_ip_address(ns, setting, address, prefix, gateway=None)
Remove all IP addresses from given static setting and add new IP address.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

• prefix (int) – network prefix.

• gateway (str or None) – default gateway or None

lmi.scripts.networking.replace_static_route(ns, setting, address, prefix, metric=None,
next_hop=None)

Remove all static routes and add given static route to the given setting.

Parameters

• setting (LMI_IPAssignmentSettingData) – network setting.

• address (str) – IPv4 or IPv6 address.

• prefix (int) – network prefix.

• metric – metric for the route or None

• next_hop (str or None) – IPv4 or IPv6 address for the next hop of the route or None

3.1. OpenLMI client components 175

OpenLMI Documentation, Release latest

Power Management Script python reference

Main interface functions wrapped with lmi commands are:

• list_power_states()

• switch_power_state()

All of these accept NS object as the first argument. It is an instance of lmi.shell.LMINamespace.

Power Management Module API LMI power management provider client library.

lmi.scripts.powermanagement.POWER_STATE_HIBERNATE = 7
Hibernate the system.

lmi.scripts.powermanagement.POWER_STATE_POWEROFF = 12
Turn off the system.

lmi.scripts.powermanagement.POWER_STATE_POWEROFF_FORCE = 8
Turn off the system without shutting down services first.

lmi.scripts.powermanagement.POWER_STATE_REBOOT = 15
Reboot the system.

lmi.scripts.powermanagement.POWER_STATE_REBOOT_FORCE = 5
Reboot the system without shutting down services first.

lmi.scripts.powermanagement.POWER_STATE_SUSPEND = 4
Suspend the system.

lmi.scripts.powermanagement.list_power_states(ns)
Get list of available power states.

Returns list of power states

Return type list of POWER_STATE_* constants

lmi.scripts.powermanagement.switch_power_state(ns, state)
Switch system power state.

Parameters state (POWER_STATE_* constant) – Requested power state.

Realmd Script python reference

Realmd Module API LMI realmd provider client library.

lmi.scripts.realmd.join(ns, domain, user, _password=None)
Join the domain.

Parameters

• domain (string) – The domain to be joined.

• user (string) – User name to authenticate with

• password (string) – The authentication password

lmi.scripts.realmd.leave(ns, domain, user, _password=None)
Leave the domain.

Parameters

• domain (string) – The domain to be left.

176 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• user (string) – User name to authenticate with

• password (string) – The authentication password

lmi.scripts.realmd.show(ns)
Show the joined domain.

Service Script python reference

LMI service provider client library.

lmi.scripts.service.enable_service(ns, service, enable=True)
Enable or disable service.

Parameters

• service (string or lmi.shell.LMIInstanceName) – Service name or instance.

• enable (boolean) – Whether the service should be enabled or disabled. Enabled service is
started on system boot.

lmi.scripts.service.get_enabled_string(ns, service)
Return human friendly string for enabled state.

Parameters service – Either a service instance of its name.

Returns Status description. One of: { Yes, No, Static }. Where Static represents a service
that can not be enabled or disabled, and are run only if something depends on them. It lacks
[Install] section.

Return type string

lmi.scripts.service.get_service(ns, service)
Return lmi.shell.LMIInstance object matching the given service name.

Parameters service (string) – Service name.

lmi.scripts.service.get_status_string(ns, service)
Return human friendly status description.

Parameters service – Either a service instance or its name.

Returns Status description. One of { OK, Running, Stopped - OK, Stopped -
Error }.

Return type string

lmi.scripts.service.invoke_on_service(ns, method, service, description)
Invoke parameter-less method on given service.

Parameters

• method (string) – Name of method of LMI_Service to invoke.

• service (string or lmi.shell.LMIInstanceName) – Name of service or an instance
to operate upon.

• description (string) – Description of what has been done with service. This is used just for
logging.

Returns Success flag.

Return type boolean

3.1. OpenLMI client components 177

OpenLMI Documentation, Release latest

lmi.scripts.service.list_services(ns, kind=’enabled’)
List services. Yields service instances.

Parameters kind (string) – What kind of services to list. Possible options are:

• ‘enabled’ - list only enabled services

• ‘disabled’ - list only disabled services

• ‘all’ - list all services

Returns Instances of LMI_Service.

Return type generator over lmi.shell.LMIInstance.

lmi.scripts.service.reload_service(ns, service, force=False, just_try=False)
Reload service.

Parameters

• service (string or lmi.shell.LMIInstanceName) – Service name or instance.

• force (boolean) – Whether the service should be restarted if the reload can no be done.

• just_try (boolean) – This applies only when force is True. If True, only the the
running service will be restarted. Nothing is done for stopped service.

lmi.scripts.service.restart_service(ns, service, just_try=False)
Restart service.

Parameters

• service (string or lmi.shell.LMIInstanceName) – Service name or instance.

• just_try (boolean) – When False, the service will be started even if it is not running.
Otherwise only running service will be restarted.

lmi.scripts.service.start_service(ns, service)
Start service.

Parameters service (string or lmi.shell.LMIInstanceName) – Service name.

lmi.scripts.service.stop_service(ns, service)
Stop service.

Parameters service (string or lmi.shell.LMIInstanceName) – Service name or instance.

Software Script python reference

LMI software provider client library.

Package specification Referred to as PKG_SPEC. Is a string identifying set of packages. It constitutes at least
of package name. Each additional detail narrows the the possible set of matchin packages. The most complete
specifications are nevra and envra.

Follows the list of all possible specifications:

• <name>

• <name>.<arch>

• <name>-<version>-<release>.<arch> (nvra)

• <name>-<epoch>:<version>-<release>.<arch> (nevra)

178 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• <epoch>:<name>-<version>-<release>.<arch> (envra)

Regular expressions These may be used check, whether the given PKG_SPEC (package specification) is valid and
allows to get all the interesting parts out of it.

lmi.scripts.software.RE_NA
Regular expression matching package specified as <name>.<arch>.

lmi.scripts.software.RE_NEVRA
Regular expression matching package specified as:

<name>-<epoch>:<version>-<release>.<arch>

The epoch part is optional. So it can be used also to match nvra string.

lmi.scripts.software.RE_ENVRA
Regular expression matching package specified as:

<epoch>:<name>-<version>-<release>.<arch>

Functions
lmi.scripts.software.FILE_TYPES = (‘Unknown’, ‘File’, ‘Directory’, ‘Symlink’, ‘FIFO’, ‘Character Device’, ‘Block Device’)

Array of file type names.
lmi.scripts.software.find_package(ns, allow_duplicates=False, exact_match=True, **kwargs)

Yields just a limited set of packages matching particular filter. Keyword arguments are used to specify this filter,
which can contain following keys:

name : Package name.

epoch : package’s epoch

version : version of package

release : release of package

arch : requested architecture of package

nevra : string containing all previous keys in following notation:

<name>-<epoch>:<version>-<release>.<arch>

envra : similar to nevra, the notation is different:

<epoch>:<name>-<version>-<release>.<arch>

repoid : repository identification string, where package must be available

pkg_spec : Package specification string. See Package specification.

Parameters

• allow_duplicates (boolean) – Whether the output shall contain multiple versions of the
same packages identified with <name>.<architecture>.

• exact_match (boolean) – Whether the name key shall be tested for exact match. If False
it will be tested for inclusion.

Returns Instance names of LMI_SoftwareIdentity.

Return type generator over lmi.shell.LmiInstanceName

3.1. OpenLMI client components 179

OpenLMI Documentation, Release latest

lmi.scripts.software.get_package_nevra(package)
Get a nevra from an instance of LMI_SoftwareIdentity.

Parameters package (lmi.shell.LMIInstance or lmi.shell.LMIInstanceName) –
Instance or instance name of LMI_SoftwareIdentity representing package to install.

Returns Nevra string of particular package.

Return type string

lmi.scripts.software.get_repository(ns, repoid)
Return an instance of repository identified by its identification string.

Parameters repoid (string) – Identification string of repository.

Returns Instance of LMI_SoftwareIdentityResource.

Return type lmi.shell.LMIInstance

lmi.scripts.software.install_from_uri(ns, uri, force=False, update=False)
Install package from URI on remote system.

Parameters

• uri (string) – Identifier of RPM package available via http, https, or ftp service.

• force (boolean) – Whether the installation shall be done even if installing the same (rein-
stalling) or older version than already installed.

• update (boolean) – Whether this is an update. Update fails if package is not already installed
on system.

lmi.scripts.software.install_package(ns, package, force=False, update=False)
Install package on system.

Parameters

• package (lmi.shell.LMIInstance or lmi.shell.LMIInstanceName) – In-
stance or instance name of LMI_SoftwareIdentity representing package to install.

• force (boolean) – Whether the installation shall be done even if installing the same (rein-
stalling) or older version than already installed.

• update (boolean) – Whether this is an update. Update fails if package is not already installed
on system.

Returns Software identity installed on remote system. It’s an instance
LMI_SoftwareIdentity.

Return type lmi.shell.LMIInstance

lmi.scripts.software.list_available_packages(ns, allow_installed=False, al-
low_duplicates=False, repoid=None)

Yields instances of LMI_SoftwareIdentity representing available packages.

Parameters

• allow_installed (boolean) – Whether to include available packages that are installed.

• allow_duplicates (boolean) – Whether to include duplicates packages (those having same
name and architecture). Otherwise only the newest packages available for each (name,
architecture) pair will be contained in result.

• repoid (string) – Repository identification string. This will filter available packages just for
those provided by this repository.

Return type generator

180 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

lmi.scripts.software.list_installed_packages(ns)
Yields instances of LMI_SoftwareIdentity representing installed packages.

Return type generator

lmi.scripts.software.list_package_files(ns, package, file_type=None)
Get a list of files belonging to particular installed RPM package. Yields instances of
LMI_SoftwareIdentityFileCheck.

Parameters

• package (lmi.shell.LMIInstance or lmi.shell.LMIInstanceName) – In-
stance or instance name of LMI_SoftwareIdentity.

• file_type (string, integer or None) – Either an index to FILE_TYPES array or one of: {
"all", "file", "directory", "symlink", "fifo", "device" }.

Returns Instances of LMI_SoftwareIdentityFileCheck.

Return type generator over lmi.shell.LMIInstance

lmi.scripts.software.list_repositories(ns, enabled=True)
Yields instances of LMI_SoftwareIdentityResource representing software repositories.

Parameters enabled (boolean or None) – Whether to list only enabled repositories. If False only
disabled repositories shall be listed. If None, all repositories shall be listed.

Returns Instances of LMI_SoftwareIdentityResource

Return type generator over lmi.shell.LMIInstance

lmi.scripts.software.pkg_spec_to_filter(pkg_spec)
Converts package specification to a set of keys, that can be used to query package properties.

Parameters pkg_spec (string) – Package specification (see Package specification). Only keys given
in this string will appear in resulting dictionary.

Returns Dictionary with possible keys being a subset of following: {’name’, ’epoch’,
’version’, ’release’, ’arch’}. Values are non-empty parts of pkg_spec string.

Return type dictionary

lmi.scripts.software.remove_package(ns, package)
Uninstall given package from system.

Raises LmiFailed‘ will be raised on failure.

Parameters package (lmi.shell.LMIInstance or lmi.shell.LMIInstanceName) –
Instance or instance name of LMI_SoftwareIdentity representing package to remove.

lmi.scripts.software.render_failed_flags(failed_flags)
Make one liner string representing failed flags list of file that did not pass the verification.

Parameters failed_flags (list) – Value of FailedFlags property of some
LMI_SoftwareIdentityFileCheck.

Returns Verification string with format matching the output of rpm -V command.

Return type string

lmi.scripts.software.set_repository_enabled(ns, repository, enable=True)
Enable or disable repository.

Parameters

3.1. OpenLMI client components 181

OpenLMI Documentation, Release latest

• repository (lmi.shell.LMIInstance or lmi.shell.LMIInstanceName) – In-
stance of LMI_SoftwareIdentityResource.

• enable (boolean) – New value of EnabledState property.

Returns Previous value of repository’s EnabledState.

Return type boolean

lmi.scripts.software.verify_package(ns, package)
Returns the instances of LMI_SoftwareIdentityFileCheck representing files, that did not pass the
verification.

Parameters package (lmi.shell.LMIInstance or lmi.shell.LMIInstanceName) –
Instance or instance name of LMI_SoftwareIdentity representing package to verify.

Returns List of instances of LMI_SoftwareIdentityFileCheck with non-empty
FailedFlags property.

Return type list

SSSD Script python reference

LMI SSSD provider client library.

This set of functions can list and manage SSSD’s responders and domains.

lmi.scripts.sssd.debug_level(level)
Return hexadecimal representation of debug level.

Parameters level (int) – Debug level.

Return type string

Storage Script python reference

OpenLMI Storage Scripts module is a standard python module, which provides high-level functions to manage storage
on remote hosts with installed OpenLMI-Storage provider.

It is built on top of LMIShell, however only very little knowledge about the LMIShell and CIM model are required.

All LMI metacommands are implemented using this python module. I.e. everything that LMI metacommand can do
with storage you can do also in python using this module, which makes it a good start for LMI scripting.

Example:

Connect to a remote system using lmishell
import lmi.shell
conn = lmi.shell.connect("remote.host.org", "root", "opensesame")

Find a namespace we want to operate on, root/cimv2 is the most used.
ns = conn.root.cimv2

Now use lmi.scripts.storage functions.

For example, let’s partition /dev/vda disk
from lmi.scripts.storage import partition
partition.create_partition_table(ns, ’vda’, partition.PARTITION_TABLE_TYPE_GPT)
Create one large partition on it
new_partition = partition.create_partition(ns, ’vda’)

182 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Create a volume group with the partition
from lmi.scripts.storage import lvm
new_vg = lvm.create_vg(ns, [’vda1’], ’my_vg’)
print ’New VG name: ’, new_vg.Name

Create a 100 MB logical volume on the volume group
MEGABYTE = 1024*1024
new_lv = lvm.create_lv(ns, new_vg, ’my_lv’, 100 * MEGABYTE)

Format the LV
from lmi.scripts.storage import fs
fs.create_fs(ns, [new_lv], ’xfs’)

It is important to note that most of the module functions accept both string or LMIInstance as parameters. For
example, these two lines would have the same effect in the example above:

new_lv = lvm.create_lv(ns, ’my_vg’, 100*MEGABYTE)

new_lv = lvm.create_lv(ns, new_vg, 100*MEGABYTE)

The first one use plain string as a volume group name, while the other uses LMIShell’s LMIInstance previously
returned from lvm.create_vg().

Common functions Common storage functionality.

lmi.scripts.storage.common.escape_cql(s)
Escape potentially unsafe string for CQL.

It is generally not possible to do anything really harmful in CQL (there is no DELETE nor DROP TABLE), but
just to be nice, all strings passed to CQL should escape backslash ‘’ and double quote ‘”’.

Parameters s (string) – String to escape.

Return type string

lmi.scripts.storage.common.get_children(ns, obj, deep=False)
Return list of all children of given LMIInstance.

For example:

•If obj is LMIInstance/LMI_VGStoragePool (=Volume Group), it returns all its Logical Volumes (=LMI-
Instance/LMI_LVStorageExtent).

•If obj is LMIInstance/LMI_StorageExtent of a disk, it returns all its partitions (=LMIIn-
stance/CIM_GenericDiskPartition).

•If obj is LMIInstance/LMI_DiskPartition and the partition is Physical Volume of a Volume Group„ it
returns the pool (LMIInstance/LMI_VGStoragePool).

Parameters

• obj (LMIInstance/CIM_StorageExtent or LMIInstance/LMI_VGStoragePool or string) –
Object to find children of.

• deep (Boolean) – Whether all children of the object should be returned or only immediate
ones.

lmi.scripts.storage.common.get_devices(ns, devices=None)
Returns list of block devices. If no devices are given, all block devices on the system are returned.

3.1. OpenLMI client components 183

OpenLMI Documentation, Release latest

This functions just converts list of strings to list of appropriate LMIInstances.

Parameters devices (list of LMIInstance/CIM_StorageExtent or list of strings) – Devices to list.

Return type list of LMIInstance/CIM_StorageExtent.

lmi.scripts.storage.common.get_parents(ns, obj, deep=False)
Return list of all parents of given LMIInstance.

For example:

•If obj is LMIInstance/LMI_LVStorageExtent (=Logical Volume), it returns LMIIn-
stance/LMI_VGStoragePool (=Volume Group).

•If obj is LMIInstance/LMI_VGStoragePool (=Volume Group), it returns all its Physical Volumes (=LMI-
Instance/CIM_StorageExtent).

Parameters

• obj (LMIInstance/CIM_StorageExtent or LMIInstance/LMI_VGStoragePool or string) –
Object to find parents of.

• deep (Boolean) – Whether all parents of the object should be returned or only immediate
ones.

lmi.scripts.storage.common.size2str(size, human_friendly)
Convert size (in bytes) to string.

Parameters

• size (int) – Size of something in bytes.

• human_friendly (bool) – If True, the returned string is returned in human-friendly units
(KB, MB, ...).

Return type string

lmi.scripts.storage.common.str2device(ns, device)
Convert string with name of device to LMIInstance of the device. If LMIInstance is provided, nothing is done
and the instance is just returned. If string is given, appropriate LMIInstance is looked up and returned. This
functions throws an error when the device cannot be found.

The main purpose of this function is to convert parameters in functions, where both string and LMIInstance is
allowed.

Parameters device (LMIInstance/CIM_StorageExtent or string with name of device) – Device to
convert.

Return type LMIInstance/CIM_StorageExtent

lmi.scripts.storage.common.str2obj(ns, obj)
Convert string with name of device or volume group to LMIInstance of the device or the volume group.

If LMIInstance is provided, nothing is done and the instance is just returned. If string is given, appropriate
LMIInstance is looked up and returned. This functions throws an error when the device or volume group cannot
be found.

The main purpose of this function is to convert parameters in functions, where both string and LMIInstance is
allowed.

Parameters obj (LMIInstance/CIM_StorageExtent or LMIInstance/LMI_VGStoragePool or string
with name of device or pool) – Object to convert.

Return type LMIInstance/CIM_StorageExtent or LMIInstance/LMI_VGStoragePool

184 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

lmi.scripts.storage.common.str2size(size, additional_unit_size=None, addi-
tional_unit_suffix=None)

Convert string from human-friendly size to bytes. The string is expected to be integer number, optionally with
on of these suffixes:

•k, K - kilobytes, 1024 bytes,

•m, M - megabytes, 1024 * 1024 bytes,

•g, G - gigabytes, 1024 * 1024 * 1024 bytes,

•t, T - terabytes, 1024 * 1024 * 1024 * 1024 bytes,

Parameters

• size (string) – The size to convert.

• additional_unit_size (int) – Additional unit size for additional_unit_suffix, e.g. 4 *
1024*1024 for extent size.

• additional_unit_suffix (string) – Additional suffix, e.g. ‘E’ for extents.

Return type int

lmi.scripts.storage.common.str2vg(ns, vg)
Convert string with name of volume group to LMIInstance of the LMI_VGStoragePool.

If LMIInstance is provided, nothing is done and the instance is just returned. If string is provided, appropriate
LMIInstance is looked up and returned.

This functions throws an error when the device cannot be found.

The main purpose of this function is to convert parameters in functions, where both string and LMIInstance is
allowed.

Parameters vg (LMIInstance/LMI_VGStoragePool or string) – VG to retrieve.

Return type LMIInstance/LMI_VGStoragePool

Partitioning Partition management functions.

lmi.scripts.storage.partition.create_partition(ns, device, size=None, parti-
tion_type=None)

Create new partition on given device.

Parameters

• device (LMIInstance/CIM_StorageExtent or string) – Device which should be partitioned.

• size (int) – Size of the device, in blocks. See device’s BlockSize to get it. If no size is
provided, the largest possible partition is created.

• partition_type (int) – Requested partition type. See PARTITION_TYPE_xxx variables. If
no type is given, extended partition will be automatically created as 4th partition on MS-
DOS style partition table with a logical partition with requested size on it.

Return type LMIInstance/CIM_GenericDiskPartition.

lmi.scripts.storage.partition.create_partition_table(ns, device, table_type)
Create new partition table on a device. The device must be empty, i.e. must not have any partitions on it.

Parameters

• device (LMIInstance/CIM_StorageExtent) – Device where the partition table should be cre-
ated.

3.1. OpenLMI client components 185

OpenLMI Documentation, Release latest

• table_type (int) – Requested partition table type. See PARTITION_TABLE_TYPE_xxx
variables.

lmi.scripts.storage.partition.delete_partition(ns, partition)
Remove given partition

Parameters partition (LMIInstance/CIM_GenericDiskPartition) – Partition to delete.

lmi.scripts.storage.partition.get_disk_partition_table(ns, device)
Returns LMI_DiskPartitionTableCapabilities representing partition table on given disk.

Parameters device (LMIInstance/CIM_StorageExtent or string) – Device which should be exam-
ined.

Return type LMIInstance/LMI_DiskPartitionConfigurationCapabilities.

lmi.scripts.storage.partition.get_disk_partitions(ns, disk)
Return list of partitions on the device (not necessarily disk).

Parameters device (LMIInstance/CIM_StorageExtent or string) – Device which should be parti-
tioned.

Return type List of LMIInstance/CIM_GenericDiskPartition.

lmi.scripts.storage.partition.get_largest_partition_size(ns, device)
Returns size of the largest free region (in blocks), which can accommodate a partition on given device. There
must be partition table present on this device.

Parameters device (LMIInstance/CIM_StorageExtent or string) – Device which should be exam-
ined.

Return type int

lmi.scripts.storage.partition.get_partition_disk(ns, partition)
Return a device on which is located the given partition.

Parameters partition (LMIInstance/CIM_GenericDiskPartition or string) – Partition to examine.

Return type LMIInstance/CIM_StorageExtent.

lmi.scripts.storage.partition.get_partition_tables(ns, devices=None)
Returns list of partition tables on given devices. If no devices are given, all partitions on all devices are returned.

Parameters devices (list of LMIInstance/CIM_StorageExtent or list of strings) – Devices to list
partition tables on.

Return type List of tuples (LMIInstance/CIM_StorageExtent, LMIIn-
stance/LMI_DiskPartitionConfigurationCapabilities).

lmi.scripts.storage.partition.get_partitions(ns, devices=None)
Retrieve list of partitions on given devices. If no devices are given, all partitions on all devices are returned.

Parameters devices (List of LMIInstance/CIM_StorageExtent or list of string) – Devices to list
partitions on.

Return type List of LMIInstance/CIM_GenericPartition.

LUKS Management LUKS management functions.

lmi.scripts.storage.luks.add_luks_passphrase(ns, fmt, passphrase, new_passphrase)
Adds new password to LUKS format. Each format can have up to 8 separate passwords and any of them can be
used to open(decrypt) the format.

186 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Any existing passphrase must be provided to add a new one. This proves the caller is authorized to add new
passphrase (because it already knows one) and also this ‘old’ passphrase is used to retrieve encryption keys.
This ‘old’ passphrase is not removed nor replaced when adding new passphrase!

Parameters

• fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to modify.

• passphrase (string) – Existing LUKS passphrase.

• new_passphrase (string) – New passphrase to add to the format.

lmi.scripts.storage.luks.close_luks(ns, fmt)
Closes clear-text block device previously opened by open_luks().

Parameters fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to close.

lmi.scripts.storage.luks.create_luks(ns, device, passphrase)
Format given device with LUKS encryption format. All data on the device will be deleted! Encryption key and
algorithm will be chosen automatically.

Parameters

• device (LMIInstance/CIM_StorageExtent or string) – Device to format with LUKS data

• passphrase (string) – Password to open the encrypted data. This is not the encryption key.

Return type LMIInstance/LMI_EncryptionFormat

lmi.scripts.storage.luks.delete_luks_passphrase(ns, fmt, passphrase)
Delete passphrase from LUKS format.

Parameters

• fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to modify.

• passphrase (string) – The passphrase to remove

lmi.scripts.storage.luks.get_luks_device(ns, fmt)
Return clear-text device for given LUKS format. The format must be already opened by open_luks().

Parameters fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to inspect.

Return type LMIInstance/LMI_LUKSStorageExtent

Returns Block device with clear-text data or None, if the LUKS format is not open.

lmi.scripts.storage.luks.get_luks_list(ns)
Retrieve list of all encrypted devices.

Return type list of LMIInstance/LMI_EncryptionFormat.

lmi.scripts.storage.luks.get_passphrase_count(ns, fmt)
Each LUKS format can have up to 8 passphrases. Any of these passphrases can be used to decrypt the format
and create clear-text device.

This function returns number of passphrases in given LUKS format.

Parameters fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to inspect.

Return type int

Returns Number of used passphrases.

lmi.scripts.storage.luks.open_luks(ns, fmt, name, passphrase)
Open encrypted LUKS format and expose it as a clear-text block device.

Parameters

3.1. OpenLMI client components 187

OpenLMI Documentation, Release latest

• fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to open.

• name (string) – Requested name of the clear-text block device. It will be available as
/dev/mapper/<name>.

• passphrase (string) – Password to open the encrypted data.

Return type LMIInstance/LMI_LUKSStorageExtent

Returns The block device with clear-text data.

Logical Volume Management LVM management functions.

lmi.scripts.storage.lvm.create_lv(ns, vg, name, size)
Create new Logical Volume on given Volume Group.

Parameters

• vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to allocate the volume
from.

• name (string) – Name of the logical volume.

• size (int) – Size of the logical volume in bytes.

Return type LMIInstance/LMI_LVStorageExtent

lmi.scripts.storage.lvm.create_vg(ns, devices, name, extent_size=None)
Create new Volume Group from given devices.

Parameters

• device – Devices to add to the Volume Group.

• name (string) – Name of the Volume gGoup.

• extent_size (int) – Extent size in bytes.

Return type LMIInstance/LMI_VGStoragePool

lmi.scripts.storage.lvm.delete_lv(ns, lv)
Destroy given Logical Volume.

Parameters lv (LMIInstance/LMI_LVStorageExtent or string) – Logical Volume to destroy.

lmi.scripts.storage.lvm.delete_vg(ns, vg)
Destroy given Volume Group.

Parameters vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to delete.

lmi.scripts.storage.lvm.get_lv_vg(ns, lv)
Return Volume Group of given Logical Volume.

Parameters lv (LMIInstance/LMI_LVStorageExtent or string) – Logical Volume to examine.

Return type LMIInstance/LMI_VGStoragePool

lmi.scripts.storage.lvm.get_lvs(ns, vgs=None)
Retrieve list of all logical volumes allocated from given volume groups.

If no volume groups are provided, all logical volumes on the system are returned.

Parameters vgs (list of LMIInstance/LMI_VGStoragePool or list of strings) – Volume Groups to
examine.

Return type list of LMIInstance/LMI_LVStorageExtent.

188 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

lmi.scripts.storage.lvm.get_tp_vgs(ns, tp)
Return Volume Groups of given Thin Pool.

Alias for get_vg_tps.

lmi.scripts.storage.lvm.get_tps(ns)
Retrieve list of all thin pools on the system.

Return type list of LMIInstance/LMI_VGStoragePool

lmi.scripts.storage.lvm.get_vg_lvs(ns, vg)
Return list of Logical Volumes on given Volume Group.

Parameters vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to examine.

Return type list of LMIInstance/LMI_LVStorageExtent

lmi.scripts.storage.lvm.get_vg_pvs(ns, vg)
Return Physical Volumes of given Volume Group.

Parameters vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to examine.

Return type list of LMIInstance/CIM_StorageExtent

lmi.scripts.storage.lvm.get_vg_tps(ns, vg)
Return Thin Pools of given Volume Group.

Parameters vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to examine.

Return type list of LMIInstance/CIM_StoragePool

lmi.scripts.storage.lvm.get_vgs(ns)
Retrieve list of all volume groups on the system.

Return type list of LMIInstance/LMI_VGStoragePool

lmi.scripts.storage.lvm.modify_vg(ns, vg, add_pvs=None, remove_pvs=None)
Modify given Volume Group.

Add ‘add_pvs’ devices as Physical Volumes of the group. Remove ‘remove_pvs’ devices from the Volume
Group.

Parameters

• vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to delete.

• add_pvs (List of LMIInstances/LMI_VGStoragePools or strings) – List of new devices to
be added as Physical Volumes of the VG.

• remove_pvs (List of LMIInstances/LMI_VGStoragePools or strings) – List of Physical Vol-
ume to be removed from the VG.

MD RAID MD RAID management functions.

lmi.scripts.storage.raid.create_raid(ns, devices, level, name=None)
Create new MD RAID device.

Parameters

• device – Devices to add to the RAID.

• level (int) – RAID level.

• name (string) – RAID name.

Return type LMIInstance/LMI_MDRAIDStorageExtent

3.1. OpenLMI client components 189

OpenLMI Documentation, Release latest

lmi.scripts.storage.raid.delete_raid(ns, raid)
Destroy given RAID device

Parameters raid (LMIInstance/LMI_MDRAIDStorageExtent) – MD RAID to destroy.

lmi.scripts.storage.raid.get_raid_members(ns, raid)
Return member devices of the RAID.

Parameters raid (LMIInstance/LMI_MDRAIDStorageExtent) – MD RAID to examine.

Return type List of LMIInstance/CIM_StorageExtent

lmi.scripts.storage.raid.get_raids(ns)
Retrieve list of all MD RAIDs on the system.

Return type list of LMIInstance/LMI_MDRAIDStorageExtent.

Filesystems and data formats Filesystem management functions.

lmi.scripts.storage.fs.create_fs(ns, devices, fs, label=None)
Format given devices with a filesystem. If multiple devices are provided, the format will span over all these
devices (currently supported only for btrfs).

Parameters

• devices (list of LMIInstance/CIM_StorageExtent or list of strings) – Devices to format.

• fs (string) – Requested filesystem type (case-insensitive).

• label (string) – The filesystem label.

Return type LMIInstance/CIM_LocalFileSystem

lmi.scripts.storage.fs.delete_format(ns, fmt)
Remove given filesystem or data format from all devices, where it resides.

Parameters fmt (LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat) – Format
to delete.

lmi.scripts.storage.fs.get_device_format_label(ns, device)
Return short text description of the format, ready for printing.

Parameters device (LMIInstance/CIM_StorageExtent or string) – Device to describe.

Return type string

lmi.scripts.storage.fs.get_format_label(_ns, fmt)
Return short text description of the format, ready for printing.

Parameters fmt (LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat) – Format
to describe.

Return type string

lmi.scripts.storage.fs.get_format_on_device(ns, device, format_type=3)
Return filesystem or data format, which is on given device.

Parameters

• device (LMIInstance/CIM_StorageExtent or string) – Device to to examine.

• format_type (int) – Type of format to find.

– FORMAT_ALL - return either CIM_LocalFileSystem or LMI_DataFormat.

190 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

– FORMAT_FS - return only CIM_LocalFileSystem or None, if there is no
filesystem on the device.

– FORMAT_DATA - return only LMI_DataFormat or None, if there is no data for-
mat on the device.

Return type LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat

lmi.scripts.storage.fs.get_formats(ns, devices=None, format_type=3, nodevfs=False)
Retrieve list of filesystems on given devices. If no devices are given, all formats on all devices are returned.

Parameters

• devices (list of LMIInstance/CIM_StorageExtent or list of strings) – Devices to list formats
on.

• format_type (int) – Type of formats to find.

– FORMAT_ALL - return either CIM_LocalFileSystem or LMI_DataFormat.

– FORMAT_FS - return only CIM_LocalFileSystem or None, if there is no
filesystem on the device.

– FORMAT_DATA - return only LMI_DataFormat or None, if there is no data for-
mat on the device.

• nodevfs (bool) – Whether non-device filesystems like tmpfs, cgroup, procfs etc. should be
returned.

Return type list of LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat

lmi.scripts.storage.fs.str2format(ns, fmt)
Convert string with name of device to LMIInstance of the format on the device.

If LMIInstance is provided, nothing is done and the instance is just returned. If a string is given, appropriate
LMIInstance is looked up and returned.

This functions throws an error when the device cannot be found.

Parameters fmt (LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat or string)
– The format.

Retval LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat

Printing Functions to display information about block devices.

lmi.scripts.storage.show.device_show(ns, device, human_friendly)
Print extended information about the device.

Parameters

• part – Device to show.

• human_friendly (bool) – If True, the device sizes are shown in human-friendly units (KB,
MB, ...).

lmi.scripts.storage.show.device_show_data(ns, device, human_friendly)
Display description of data on the device.

Parameters device (LMIInstance/CIM_StorageExtent or string) – Device to show.

lmi.scripts.storage.show.device_show_device(ns, device, human_friendly)
Print basic information about storage device, common to all device types.

Parameters device (LMIInstance/CIM_StorageExtent or string) – Device to show.

3.1. OpenLMI client components 191

OpenLMI Documentation, Release latest

lmi.scripts.storage.show.format_show(ns, fmt, human_friendly)
Display description of data on the device.

Parameters fmt (LMIInstance/LMI_DataFormat or string) – Format to show.

lmi.scripts.storage.show.fs_show(ns, fmt, human_friendly)
Display description of filesystem on the device.

Parameters fmt (LMIInstance/CIM_LocalFileSystem or string) – Filesystem to show.

lmi.scripts.storage.show.lv_show(ns, lv, human_friendly)
Print extended information about the Logical Volume.

Parameters lv (LMIInstance/LMI_LVStorageExtent or string) – Logical Volume to show.

lmi.scripts.storage.show.partition_show(ns, part, human_friendly)
Print extended information about the partition.

Parameters part (LMIInstance/CIM_GenericDiskPartition or string) – Partition to show.

lmi.scripts.storage.show.partition_table_show(ns, disk, human_friendly)
Print extended information about the partition table on given disk.

Parameters disk (LMIInstance/CIM_StorageExtent or string) – Device with partition table to show.

lmi.scripts.storage.show.raid_show(ns, r, human_friendly)
Print extended information about the RAID.

Parameters r (LMIInstance/LMI_MDRAIDStorageExtent or string) – RAID to show.

lmi.scripts.storage.show.tlv_show(ns, tlv, human_friendly)
Print extended information about the Thin Logical Volume.

Parameters tlv (LMIInstance/LMI_LVStorageExtent or string) – Thin Logical Volume to show.

lmi.scripts.storage.show.vg_show(ns, vg, human_friendly)
Print extended information about the Volume Group.

Parameters vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to show.

System Script python reference

Main interface function wrapped with lmi command is:

• get_system_info()

It accepts NS object as the first argument, an instance of lmi.shell.LMINamespace.

System Module API LMI system client library.

lmi.scripts.system.format_memory_size(size)
Returns formatted memory size.

Parameters size (Number) – Size in bytes

Returns Formatted size string.

Return type String

lmi.scripts.system.get_all_instances(ns, class_name)
Returns all instances of instance_name.

Parameters instance_name (String) – Instance name

192 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Returns List of instances of instance_name

Return type List of lmi.shell.LMIInstance

lmi.scripts.system.get_colored_string(msg, color)
Returns colored message with ANSI escape sequences for terminal.

Parameters

• msg (String) – Message to be colored.

• color (Integer) – Color of the message [GREEN_COLOR, YELLOW_COLOR,
RED_COLOR].

Returns Colored message.

Return type String

lmi.scripts.system.get_hostname(ns)

Returns Tabular data of system hostname.

Return type List of tuples

lmi.scripts.system.get_hwinfo(ns)

Returns Tabular data of system hw info.

Return type List of tuples

lmi.scripts.system.get_networkinfo(ns)

Returns Tabular data of networking status.

Return type List of tuples

lmi.scripts.system.get_osinfo(ns)

Returns Tabular data of system OS info.

Return type List of tuples

lmi.scripts.system.get_servicesinfo(ns)

Returns Tabular data of some system services.

Return type List of tuples

lmi.scripts.system.get_single_instance(ns, class_name)
Returns single instance of instance_name.

Parameters instance_name (String) – Instance name

Returns Instance of instance_name

Return type lmi.shell.LMIInstance

lmi.scripts.system.get_system_info(ns)

Returns Tabular data of all general system information.

Return type List of tuples

3.1. OpenLMI client components 193

OpenLMI Documentation, Release latest

3.2 OpenLMI server components

On servers (= managed systems), OpenLMI leverages WBEM infrastructure we already have in Linux and only adds
the missing pieces: providers.

See our overview for details what is a provider and how the whole CIM+WBEM infrastructure is supposed to work.

Table of contents:

3.2.1 Usage & Troubleshooting

Installation

Fedora, Red Hat Enterprise Linux & derived Linux distributions

In Fedora Linux, one just needs to install OpenLMI packages:

$ yum install openlmi-networking openlmi-storage <any other providers>

From source code

Please refer to README of individual providers, either in git or in released tarballs.

Configuration files

/etc/openlmi/openlmi.conf is OpenLMI master configuration file.

Each provider may introduce additional configuration files, see their documentation. If a provider uses its own con-
figuration file, the provider-specific one is parsed first and all missing options are then read from OpenLMI master
configuration file.

Using this approach, administators can set e.g. one namespace for all providers in
/etc/openlmi/openlmi.conf and different log levels for some providers in their configuration files.

File format

Configuration files has simple .ini syntax, with # or ; used for comments.

Default configuration:

[CIM]
Namespace=root/cimv2
SystemClassName=PG_ComputerSystem

[Log]
Level=ERROR
Stderr=false

194 Chapter 3. Table of Contents

http://www.openlmi.org/node/1785

OpenLMI Documentation, Release latest

Section Option name Default value Description
CIM Namespace root/cimv2 Namespace where

OpenLMI providers are
registered.

CIM SystemClassName PG_ComputerSystem Name of
CIM_ComputerSystem
class, which is used to
represent the computer
system. It will be used
as SystemClassName
property value of vari-
ous classes. Different
cimmoms can instrument
variously named computer
systems and some may
not instrument any at
all. Sfcb is an example
of the later, it needs the
sblim-cmpi-base
package installed pro-
viding the basic set of
providers containing
Linux_ComputerSystem.
So in case you run a
Sfcb or you preferr
to use providers from
sblim-cmpi-base
package, you need
to change this to
Linux_ComputerSystem.

Log Level ERROR Chooses which mes-
sages are logged, either to
CIMOM and (if configured)
to standard error output.
Available levels (sorted by
severity) are:

• CRITICAL
• ERROR
• WARNING
• INFO
• DEBUG
• TRACE_WARNING
• TRACE_INFO
• TRACE_VERBOSE

Levels below INFO
(= TRACE_WARNING,
TRACE_INFO and
DEBUG) are useful mainly
for debugging and bug
reporting.

Log Stderr False Toggles sending of log mes-
sages to standard error out-
put of the CIMOM. Accepts
boolean value (see the next
section).

3.2. OpenLMI server components 195

http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Sfcb

OpenLMI Documentation, Release latest

Treating boolean values

Options expecting boolean values treat following strings as valid True values: true, 1, yes and on. While the
following are considered False: false, 0, no and off. These words are checked in a case-insensitive way. Any
other value isn’t considered valid 16.

Logging

If logging is enabled, all log messages with level INFO and above are sent to CIMOM using standard CMPI
CMLogMessage function. Consult documentation of your CIMOM how to enable output of these messages into
CIMOM logs.

Messages with TRACE_WARNING and below are sent to CIMOM using CMTraceMessage and should be visible
in CIMOM tracing log. Again, please consult your CIMOM documentation how to enable tracing logs.

With Stderr configuration option enabled, all logs are sent both to CIMOM and to the standard error output of the
CIMOM.

Logging in Pegasus

When using Pegasus CIMOM, the easiest way is to let Pegasus daemon run in foreground and send log messages to
its standard error output.

Sample /etc/openlmi/openlmi.conf:

[CIM]
Namespace = root/cimv2
SystemClassName = PG_ComputerSystem

[Log]
Level = TRACE_INFO
Stderr = True

Run Pegasus in foreground, i.e. with stderr output sent to terminal:

$ /sbin/cimserver daemon=false
INFO:cimom_entry:get_providers:146 - Provider init.
INFO:TimerManager:_timer_loop:246 - Started Timer thread.
Level 8:cmpi_logging:trace_info:126 - Timer: Checking for expired, now=17634.607226.
Level 8:cmpi_logging:trace_info:126 - Timer: No timers scheduled, waiting forever.
INFO:cimom_entry:init_anaconda:118 - Initializing Anaconda
INFO:JobManager:_worker_main:877 - Started Job thread.

Of course, more advanced logging can be configured in runtime to send provider logs into trace files, see Pegasus
documentation for details.

Note: OpenLMI providers will start logging only after they are started, i.e. when they are used for the first time.

16 Default value will be used as a fallback. This applies also to other non-boolean options in case of invalid value.

196 Chapter 3. Table of Contents

http://cvs.opengroup.org/cgi-bin/viewcvs.cgi/*checkout*/pegasus/doc/TracingUserGuide.pdf
http://cvs.opengroup.org/cgi-bin/viewcvs.cgi/*checkout*/pegasus/doc/TracingUserGuide.pdf

OpenLMI Documentation, Release latest

3.2.2 Account Provider

OpenLMI Account is CIM provider which manages POSIX accounts. It allows to create, delete and modify users and
groups.

The provider implements DMTF identity profile, for more details read DMTF profile.

Contents:

DMTF profile

The provider implements DMTF’s Simple Identity Management Profile, version 1.0.1.

Profile adjustment

The settings classes are not implemented. Necessary settings are done directly in methods of
LMI_AccountManagementService. LMI_AccountManagementService is subclass of CIM_SecurityService, be-
cause there is a change in method parameters as follows:

• CreateAccount does not take EmbeddedInstance as parameter, but a list of parameters.

Implementation

All mandatory classes are implemented.

Classes Implemented DMTF classes:

• LMI_AccountCapabilities

• LMI_AccountInstanceCreationIndication

• LMI_AccountInstanceDeletionIndication

• LMI_AccountManagementCapabilities

• LMI_AccountManagementServiceCapabilities

• LMI_AccountManagementService

• LMI_AccountManagementServiceSettingData

• LMI_AccountOnSystem

• LMI_Account

• LMI_AccountSettingData

• LMI_AssignedAccountIdentity

• LMI_AssignedGroupIdentity

• LMI_EnabledAccountCapabilities

• LMI_Group

• LMI_HostedAccountManagementService

• LMI_Identity

• LMI_MemberOfGroup

3.2. OpenLMI server components 197

http://www.dmtf.org/sites/default/files/standards/documents/DSP1034_1.0.1.pdf

OpenLMI Documentation, Release latest

• LMI_OwningGroup

• LMI_ServiceAffectsIdentity

• LMI_SettingsDefineAccountCapabilities

• LMI_SettingsDefineManagementCapabilities

Methods Implemented:

• CreateAccount

Additional methods:

• CreateGroup

Usage

General manipulation of users and groups are done with the objects from following classes:

• LMI_AccountManagementService

• LMI_Account

• LMI_Group

• LMI_MemberOfGroup

• LMI_Identity

• LMI_AccountInstanceCreationIndication

• LMI_AccountInstanceDeletionIndication

Some common use cases are described in the following parts

Note: Examples are written for lmishell version 0.9.

List users

List of users are provided by LMI_Account. Each one object of this class represents one user on the system. Both
system and non-sytem users are directly in LMI_Account class:

List user by name
print c.root.cimv2.LMI_Account.first_instance({"Name": "root"})
List user by id
print c.root.cimv2.LMI_Account.first_instance({"UserID": "0"})

List groups

Similarly like users, groups are represented by objects of LMI_Group class:

List group by name
print c.root.cimv2.LMI_Group.first_instance({"Name": "root"})
List group by id
print c.root.cimv2.LMI_Group.first_instance({"InstanceID": "LMI:GID:0"})

198 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

List group members

LMI_Identity is class representing users and groups on the system. Group membership is represented by
LMI_MemberOfGroup association. It associates LMI_Group and LMI_Identity, where LMI_Identity is associated
by LMI_AssignedAccountIdentity with LMI_Account:

Get users from root group
1) Get root group object
root_group = c.root.cimv2.LMI_Group.first_instance({"Name": "root"})
2) Get LMI_Identity objects associated with root group
identities = root_group.associators(

AssocClass="LMI_MemberOfGroup", ResultClass="LMI_Identity")
3) go through all identites, get LMI_Account associated with identity and print user name
Note: associators returns a list, but there is just one LMI_Account
for i in identities:

print i.first_associator(
AssocClass="LMI_AssignedAccountIdentity",
ResultClass="LMI_Account").Name

Create user

For user creation we have to use LMI_AccountManagementService. There is CreateAccount method, which will create
user with descired attributes:

get computer system
cs = c.root.cimv2.PG_ComputerSystem.first_instance()
get service
lams = c.root.cimv2.LMI_AccountManagementService.first_instance()
invoke method, print result
lams.CreateAccount(Name="lmishell-user", System=cs)

Create group

Similarly like creating user, creating groups are don in LMI_AccountManagementService, using CreateGroup method:

get computer system
cs = c.root.cimv2.PG_ComputerSystem.first_instance()
get service
lams = c.root.cimv2.LMI_AccountManagementService.first_instance()
invoke method, print result
print lams.CreateGroup(Name="lmishell-group", System=cs)

Delete user

User deletion is done with DeleteUser method on the desired LMI_Account object.

get the desired user
acci = c.root.cimv2.LMI_Account.first_instance({"Name": "tobedeleted"})
delete the user
acci.DeleteUser()

Note: Previous releases allowed to use DeleteInstance intrinsic method to delete LMI_Account. This
method is now deprecated and will be removed from future releases of OpenLMI Account. The reason is that

3.2. OpenLMI server components 199

OpenLMI Documentation, Release latest

DeleteInstance cannot have parameters; it is equivalent to call DeleteAccount without specifying param-
eters.

Delete group

Group deletion is done with DeleteGroup method on the desired LMI_Group object,

get the desired group
grp = c.root.cimv2.LMI_Group.first_instance({"Name": "tobedeleted"})
delete the group
grp.DeleteGroup()

Note: Previous releases allowed to use DeleteInstance intrinsic method to delete LMI_Group. This method is
now deprecated and will be removed from future releases of OpenLMI Account. The reason is that we want to have
consistent way to delete user and group.

Add user to group

Adding user to group is done with CreateInstance intrinsic method on the LMI_MemberOfGroup class, which
requires reference to LMI_Group and LMI_Identity:

We will add root user to pegasus group
get group pegasus
grp = c.root.cimv2.LMI_Group.first_instance_name({"Name": "pegasus"})
get user root
acc = c.root.cimv2.LMI_Account.first_instance({"Name": "root"})
get identity of root user
identity = acc.first_associator_name(

AssocClass=’LMI_AssignedAccountIdentity’,
ResultClass="LMI_Identity")

create instance of LMI_MemberOfGroup with the above references
c.root.cimv2.LMI_MemberOfGroup.create_instance({"Member":identity, "Collection":grp})

Remove user from group

Removing user from group is done with DeleteInstance intrinsic method on the desired LMI_MemberOfGroup
object:

We will remove root user from pegasus group
get group pegasus
grp = c.root.cimv2.LMI_Group.first_instance_name({"Name": "pegasus"})
get user root
acc = c.root.cimv2.LMI_Account.first_instance({"Name": "root"})
get identity of root user
identity = acc.first_associator(

AssocClass="LMI_AssignedAccountIdentity",
ResultClass="LMI_Identity")

iterate through all LMI_MemberOfGroup associated with identity and remove the one with our group
for mog in identity.references(ResultClass="LMI_MemberOfGroup"):

if mog.Collection == grp:
mog.delete()

200 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Modify user

It is also possible to modify user details and it is done by ModifyInstance intrinsic method on the desired
LMI_Account object:

Change login shell of test user
acci = c.root.cimv2.LMI_Account.first_instance({"Name": "test"})
acci.LoginShell = ’/bin/sh’
propagate changes
acci.push()

Indications

OpenLMI Account supports the following indications:

• LMI_AccountInstanceCreationIndication

• LMI_AccountInstanceDeletionIndication

Both indications work only on the following classes:

• LMI_Account

• LMI_Group

• LMI_Identity

Please see LMIShell Indications API reference for an overview how indications work.

Creation Indication Client can be notified when instance of class has been created. It is done
with LMI_AccountInstanceCreationIndication. The indication filter query must be in the following
form: SELECT * FROM LMI_AccountInstanceCreationIndication WHERE SOURCEINSTANCE
ISA class_name, where class_name is one of the allowed classes.

The following example creates filter, handler and subscription (lmi shell does that in one step), which will notify client
when user is created:

Notify when a user is created
c.subscribe_indication(

Name="account_creation",
Query=’SELECT * FROM LMI_AccountInstanceCreationIndication WHERE SOURCEINSTANCE ISA LMI_Account’,
Destination="http://192.168.122.1:5988" # this is the destination computer, where all the indications will be delivered

)

Deletion Indication Client can be notified when instance is deleted. The same rules like in Creation Indication
applies here:

Notify when a user is deleted
c.subscribe_indication(

Name="account_deletion",
Query=’SELECT * FROM LMI_AccountInstanceDeletionIndication WHERE SOURCEINSTANCE ISA LMI_Account’,
Destination="http://192.168.122.1:5988" # this is the destination computer, where all the indications will be delivered

)

Note: Both indications use the indication manager and polling.

3.2. OpenLMI server components 201

http://pythonhosted.org/openlmi-tools/shell/indications.html

OpenLMI Documentation, Release latest

Creation Indication example The following code snippet illustrates usage of indication listener and subscription.
It is a complete minimal example of user creation. Once a new account is added, simple informational message is
printed on the standard output.

#!/usr/bin/lmishell

from lmi.shell import LMIIndicationListener
import socket
import time
import random

def ind_handler(indication, **kwargs):
print "User ’%s’ added" % indication["SourceInstance"]["Name"]

c = connect("localhost", "pegasus", "test")

indication_port = random.randint(12000, 13000)
listener = LMIIndicationListener("0.0.0.0", indication_port)
uniquename = listener.add_handler("account_watch-XXXXXXXX", ind_handler)
listener.start()

c.subscribe_indication(
Name=uniquename,
Query="select * from LMI_AccountInstanceCreationIndication where SourceInstance isa LMI_Account",
Destination="http://%s:%d" % (socket.gethostname(), indication_port)

)

try:
while True:

time.sleep(0.1)
pass

except KeyboardInterrupt:
pass

c.unsubscribe_indication(uniquename)

Note: Press Ctrl+C to terminate the script. Also, remember to change the login credentials! The example picks a
random port in the 12000 - 13000 range, no check for port occupancy is made, a conflict on a busy system is possible.

3.2.3 Fan Provider

Contents:

DMTF profiles

OpenLMI Fan provider implements Fan Profile

Fan Profile

Implemented DMTF version: 1.0.1

Described by DSP1013

202 Chapter 3. Table of Contents

http://www.dmtf.org/sites/default/files/standards/documents/DSP1013_1.0.1.pdf

OpenLMI Documentation, Release latest

It defines the classes used to describe the fans and the possible redundancy of the fans in a managed system. The
document also defines association classes that describe the relationship of the fan to the fan’s physical aspects (such
as FRU data) to the sensors monitoring the fans, to other cooling devices, to redundancy status, and to DMTF profile
version information. The information in this specification is intended to be sufficient for a provider or consumer of this
data to identify unambiguously the classes, properties, methods, and values that are mandatory to be instantiated and
manipulated to represent and manage fans and redundant fans of managed systems and subsystems that are modeled
using the DMTF CIM core and extended model definitions.

Not implemented features DMTF profile defines many classes that are not instrumented due to limitations of low
level libraries giving informations about fans. Here is a list of not implemented classes:

CIM_ManagedSystemElement Models the piece of hardware being cooled by particular fan. It’s
associated with LMI_Fan through CIM_AssociatedColling which is also not instrumented.

CIM_RedundancySet Represents redundacy of fans belonging to particular computer system. It’s as-
sociated with LMI_Fan through CIM_MemberOfCollection and CIM_IsSpare associations.
There is no way how to detect whether the fan is spare or not.

Classes that shall be implemented There are still classes missing implementation and are planned to be delivered
in future versions.

CIM_SystemDevice Associates LMI_Fan to CIM_ComputerSystem.

CIM_EnabledLogicalElementCapacilities Represents the capabilities of associated fan. It’s
associated to LMI_Fan through CIM_ElementCapabilities.

Not implemented optional features Physical Asset association from LMI_Fan to CIM_PhysicalPackage
through CIM_Realizes association class is not instrumented. This is an optional feature. It may be implemented
later.

Physical Asset is a related profile implemented by OpenLMI Hardware provider.

Class overview
Class-name Parent_class Type
LMI_Fan CIM_Fan Plain
LMI_FanSensor CIM_NumericSensor Plain
LMI_FanAssociatedSensor CIM_AssociatedSensor Association

LMI_Fan Represents the the fan installed and connected to computer. One of the most important keys is DeviceID.
It’s a sys path to kernel driver’s abstraction for fan combined with its name.

Typical sys directory for fan looks like this:

/sys/class/hwmon/hwmon1/device/
-- driver -> ../../../bus/platform/drivers/thinkpad_hwmon
-- fan1_input
-- hwmon
| -- hwmon1
| -- device -> ../../../thinkpad_hwmon
| -- power
| | -- async
| | -- autosuspend_delay_ms
| | -- control
| | -- runtime_active_kids

3.2. OpenLMI server components 203

OpenLMI Documentation, Release latest

| | -- runtime_active_time
| | -- runtime_enabled
| | -- runtime_status
| | -- runtime_suspended_time
| | -- runtime_usage
| -- subsystem -> ../../../../../class/hwmon
| -- uevent
-- modalias
-- name
-- power
| -- async
| -- autosuspend_delay_ms
| -- control
| -- runtime_active_kids
| -- runtime_active_time
| -- runtime_enabled
| -- runtime_status
| -- runtime_suspended_time
| -- runtime_usage
-- pwm1
-- pwm1_enable
-- subsystem -> ../../../bus/platform
-- uevent

Corresponding DeviceID is /sys/class/hwmon/hwmon1/device/fan1. The fan name is the prefix of
*_input file which gives the current RPM (Revolutions per minute) value.

It has several other interesting properties:

OtherIdentifyingInfo [string []] Has the name of chip controlling the fan as the first item.

LMI_FanSensor Represents a sensor measuring a speed of particular fan. It’s exactly the same keys and values
except for CreationClassName containg the name of corresponding class LMI_Fan.

It inherts many methods that are not supported because underlying library does not offer such functionality. Controlling
of fans is very hardware dependent. Different drivers may provide different ways and possibilities to manage connected
fans.

Usage

Examples for common use cases listed below are written in lmishell.

Set up

OpenLMI Fan provider uses lm-sensors to find, observe and manage installed fans. In order to make the fans exposed
to it, one operation needs to be done:

sensors-detect

sensors-detect is a script shiped with lm_sensors package in Fedora which tries to load correct modules
for various sensor devices found in system. It also writes a config used by sensors library which is utilised in this
provider. Please refer to its sensors-detect (8) man-page.

204 Chapter 3. Table of Contents

https://fedorahosted.org/openlmi/wiki/shell
http://lm-sensors.org/

OpenLMI Documentation, Release latest

Examples

Listing installed fans
c = connect("host", "user", "pass")
for fan in c.root.cimv2.LMI_Fan.instances():

print(fan.ElementName)

See also:

LMI_Fan

Getting fan’s speed Current value can be read from CurrentReading property. It’s measured in revolutions per
minute.

c = connect("host", "user", "pass")
for fan in c.root.cimv2.LMI_FanSensor.instances():

print("%s:\t%s RPM" % (fan.Name, fan.CurrentReading))

See also:

LMI_FanSensor

3.2.4 Hardware Provider

OpenLMI Hardware is CIM provider which can provide hardware information.

The provider is partially implementing DMTF Computer System Profile with addition of multiple hardware related
profiles. For more information see DMTF profiles.

Contents:

DMTF profiles

The provider is partially implementing DMTF’s Computer System Profile, version 1.0.2, with addition of multiple
hardware related profiles. Complete list of implemented profiles can be found below.

CPU Profile

CPU DMTF Profile, version 1.0.1.

Classes Implemented DMTF classes:

• LMI_Processor

• LMI_ProcessorCapabilities

• LMI_ProcessorElementCapabilities

• LMI_ProcessorCacheMemory

• LMI_AssociatedProcessorCacheMemory

• LMI_ProcessorChip

• LMI_ProcessorChipRealizes

• LMI_ProcessorChipContainer

3.2. OpenLMI server components 205

http://www.dmtf.org/sites/default/files/standards/documents/DSP1052_1.0.2.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP1022_1.0.1.pdf

OpenLMI Documentation, Release latest

• LMI_ProcessorSystemDevice

System Memory Profile

System Memory DMTF Profile, version 1.0.1.

Classes Implemented DMTF classes:

• LMI_Memory

• LMI_MemoryPhysicalPackage

• LMI_PhysicalMemory

• LMI_PhysicalMemoryRealizes

• LMI_PhysicalMemoryContainer

• LMI_MemorySlot

• LMI_MemorySlotContainer

• LMI_MemoryPhysicalPackageInConnector

• LMI_MemorySystemDevice

Physical Asset Profile

Physical Asset DMTF Profile, version 1.0.2.

Classes Implemented DMTF classes:

• LMI_Chassis

• LMI_Baseboard

• LMI_BaseboardContainer

• LMI_PointingDevice

• LMI_PortPhysicalConnector

• LMI_PortPhysicalConnectorContainer

• LMI_SystemSlot

• LMI_SystemSlotContainer

• LMI_ChassisComputerSystemPackage

Battery Profile

Battery DMTF Profile, version 1.0.0.

206 Chapter 3. Table of Contents

http://www.dmtf.org/sites/default/files/standards/documents/DSP1026_1.0.1.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP1011_1.0.2.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP1030_1.0.0.pdf

OpenLMI Documentation, Release latest

Classes Implemented DMTF classes:

• LMI_Battery

• LMI_BatteryPhysicalPackage

• LMI_PhysicalBatteryContainer

• LMI_PhysicalBatteryRealizes

• LMI_BatterySystemDevice

PCI Device Profile

PCI Device DMTF Profile, version 1.0.0.

Classes Implemented DMTF classes:

• LMI_PCIDevice

• LMI_PCIDeviceSystemDevice

• LMI_PCIBridge

• LMI_PCIBridgeSystemDevice

Disk Drive Profile

Storage Management Technical Specification, Part 3 Block Devices SNIA Profile, Clause 11: Disk Drive Lite Sub-
profile, version 1.6.0, revision 4.

Classes Implemented DMTF classes:

• LMI_DiskPhysicalPackage

• LMI_DiskPhysicalPackageContainer

• LMI_DiskDrive

• LMI_DiskDriveRealizes

• LMI_DiskDriveSoftwareIdentity

• LMI_DiskDriveElementSoftwareIdentity

• LMI_DiskDriveATAProtocolEndpoint

• LMI_DiskDriveSAPAvailableForElement

• LMI_DiskDriveATAPort

• LMI_DiskDriveDeviceSAPImplementation

• LMI_DiskDriveSystemDevice

Usage

OpenLMI Hardware provider contains hardware information, it does not implement any methods. List of provided
information divided by DMTF profiles can be found below.

3.2. OpenLMI server components 207

http://www.dmtf.org/sites/default/files/standards/documents/DSP1075_1.0.0.pdf
http://www.snia.org/sites/default/files/SMI-Sv1.6r4-Block.book_.pdf

OpenLMI Documentation, Release latest

CPU Profile

CPU Profile provides information about CPU and associated cache:

• Processor

– Number of CPUs, cores, threads

– Model

– Clock and FSB speeds

– Data and Address width

– Architecture

– Flags

– Family

– Stepping

– FRU data (Manufacturer, Model, Serial Number, Part Number)

• Processor Cache

– Level

– Size

– Type (Data / Instruction / Unified)

Used Resources

• dmidecode program [from dmidecode package]

• lscpu program [from util-linux package]

• /proc/cpuinfo file

• /sys/devices/system/cpu/* files

System Memory Profile

System Memory Profile provides information about system memory and slots:

• Memory

– Size

– Speed (in both MHz and ns)

– Size of standard memory page

– All supported sizes of huge pages

– Current state of transparent huge pages [Unsupported, Never, Madvise, Always]

– Detection of NUMA layout

• Memory slots + modules

– Number of slots and modules

– In which slots are modules plugged in

208 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

– Size of modules

– Speed of modules

– Data and Total width

– Module type and form factor

– FRU data

Used Resources

• dmidecode program [from dmidecode package]

• /proc/meminfo file

• /sys/devices/system/node/* files

• /sys/kernel/mm/hugepages/* files

• /sys/kernel/mm/transparent_hugepage/* files

Physical Asset Profile

Physical Asset Profile provides basic information about physical assets in system, usually with FRU data, currently
for following hardware (with associations):

• System chassis

• Baseboard (motherboard)

• Chassis ports (USB, LAN, VGA..)

• Chassis slots (Media card slot, Express card slot..)

• Pointing devices on chassis (Touch pad, Track point..)

Used Resources

• dmidecode program [from dmidecode package]

Battery Profile

Battery Profile provides basic information about battery:

• Capacity

• Voltage

• Chemistry

• FRU data

Used Resources

• dmidecode program [from dmidecode package]

3.2. OpenLMI server components 209

OpenLMI Documentation, Release latest

PCI Device Profile

PCI Device Profile provides information about PCI devices:

• PCI Devices:

– Bus Number

– Device Number

– Function Number

– PCI Device ID

– PCI Device Name

– Vendor ID

– Vendor Name

– Subsystem ID

– Subsystem Name

– Subsystem Vendor ID

– Subsystem Vendor Name

– Revision ID

– Base Address

– Cache Line Size

– Capabilities

– Class Code

– Command Register

– Device Select Timing

– Interrupt Pin

– Latency Timer

– Expansion ROM Base Address

• PCI Bridges (all of the above, plus):

– Bridge Type

– Primary Bus Number

– Secondary Bus Number

– Subordinate Bus Number

– Secondary Latency Timer

– IO Base

– IO Limit

– Memory Base

– Memory Limit

– Prefetch Memory Base

– Prefetch Memory Limit

210 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Used Resources

• libpci library [from pciutils package, pci/pci.h header file]

Disk Drive Profile

Disk Drive Profile provides information about disk drives:

• Disk Drive:

– Overall S.M.A.R.T. status

– Temperature

– Capacity

– Manufacturer

– Model

– Serial Number

– Firmware version

– Form Factor (disk size: 2.5”, 3.5”..)

– RPM

– Port Type (ATA/SATA/SATA2)

– Max Port Speed

– Current Port Speed

– Disk Type (HDD/SSD)

Used Resources

• lsblk program [from util-linux package]

• smartctl program [from smartmontools package]

• /sys/class/block/*/device/vendor file

• /sys/class/block/*/queue/rotational file

3.2.5 Journald Provider

OpenLMI Journald is a CIM provider exposing systemd journald log records and basic means of iteration and log
writing.

Journald is a daemon working with journals. Journal is a log, a set of log records, chronologically ordered. Records
are structured, able to carry multiple (custom) data fields. By implementation, journald is able to work with multiple
(separate) journals but we use the mixed way for the moment, which is typical in production use.

Classes used by the provider were chosen to mimic the sblim-cmpi-syslog provider set of classes allowing drop-in
replacement in production tools. We haven’t been able to find a profile it conforms to though. There’s a related DMTF
profile DSP1010 “Record Log Profile” which may be subject to extension of this provider in the future. As a benefit,
by using the parent classes (e.g. CIM_LogRecord), one is able to mix log records from orthodox syslog and journald
together.

Provider features

3.2. OpenLMI server components 211

http://freedesktop.org/wiki/Software/systemd/
http://www.dmtf.org/sites/default/files/standards/documents/DSP1010_2.0.0.pdf

OpenLMI Documentation, Release latest

This is a short list of provider features:

• log records reading

• log record iteration using persistent iterators

• new records indication

• writing new log records

For the moment, global journal is used, all journal files are mixed together.

The provider also comes with a test suite covering most of its functionality.

Contents

Caveats

There are some specifics when working with journald and OpenLMI journald provider.

Number of LMI_JournalLogRecord instances enumerated limitation

Testing the provider showed up an issue with enumeration of LMI_JournalLogRecord instances. On the testing ma-
chine there was 199583 journal records, which is simply too much for the CIMOM, exceeding memory and the
resulting XML reply limits.

An artificial limit has been set, currently to 1000 most recent records. This limit is defined by the
JOURNAL_MAX_INSTANCES_NUM define in Journal.h source file. Please use iterators instead to get access
to all records.

Iteration and iterators

Iteration is a different way of getting data through the log records. Comparing to the usual instance enumeration, this
is a sequential-like access with ability to seek back and forth in the journal. Retrieving individual records might be
slower than direct random access though memory consumption is kept on a low level.

Please check the LMI_JournalMessageLog class reference for detailed description of available iterator-related meth-
ods. Implemented iterator methods are PositionToFirstRecord(), PositionAtRecord(), GetRecord() and CancelItera-
tion(). Only relative movement is supported by the PositionAtRecord() method.

A key element of the iteration process is the iteration identifier that is typically passed in the methods listed above.
Only the PositionToFirstRecord() method is able to create new iteration identifier without the need of specifying one.

Iteration identifiers are specific to the provider and are opaque. They’re are persistent to some extent, surviving
unexpected CIMOM runtime cleanup. The only requirement for persistency to work is the journal record the iterator
identifier previously pointed to to be available at the time the iterator is reused. I.e. it won’t survive log rotation.

A remark for the LMI_JournalMessageLog.GetRecord() method: the outgoing RecordData argument carries string
data encoded in an array of uint8 elements as defined by the model. This is quite limiting and also still very free-form
on the other hand. To conform the definition, we put UTF-8 encoded string split by characters in the array and is up to
clients to decode it back to a readable form.

New log records writing security concerns

The provider has an ability to send new messages to the log. This may be percieved as a security issue in someone’s
eyes as long as you can specify custom message format that is sent to the log. The only obstacle preventing anyone in
sending spoof messages is the rather weak CIM authentication model.

212 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

However, as long as journald is a structured logging system, further information is stored along every log record.
Messages sent through the OpenLMI Journald provider may be identified by supplemental fields such as _COMM and
_EXE, pointing to a CIMOM that had been running the provider code or even the CODE_FUNC field, pointing to a
specific function that invoked the journald library code.

Potential indications endless loop

Just a note for implementing a system processing the indications. Having no specific filter for the indication subscrip-
tion and performing an action within the indication handler that involves a message being sent to syslog may result
in an endless loop as long such action generates another indication for the fresh syslog message. Even a CIMOM in
certain situations (i.e. debugging in verbose mode) may generate additional messages while sending an indication that
in turn will generate another one.

Usage

The OpenLMI Journald provider depends on running journald daemon. See the systemd manual for how to enable the
journald service.

Listing a log

This example shows simple enumeration through available LMI_JournalLogRecord instances in classic syslog-like
format:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
for rec in c.root.cimv2.LMI_JournalMessageLog.first_instance().associators():

print "%s %s %s" % (rec.MessageTimestamp.datetime.ctime(), rec.HostName, rec.DataFormat)

Note: Only a limited number of records are being enumerated and printed out, please see the Number of
LMI_JournalLogRecord instances enumerated limitation remark.

Using WQL query for simple filtering

From its nature LMIShell can only do simple filtering by matching exact property values. However there’s a posibility
of constructing custom CQL or WQL queries bringing more flexibility in specific test conditions. The result from the
query method call is a list of instances, similar to calling ".associators()" or ".instances()".

The following example uses WQL query to get a list of messages with syslog severity 3 (error) or higher:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
for rec in c.root.cimv2.wql("SELECT * FROM LMI_JournalLogRecord WHERE SyslogSeverity <= 3"):

print "[severity %d] %s" % (rec.SyslogSeverity, rec.DataFormat)

Iterating through the log

This example uses iterator methods of the LMI_JournalMessageLog class to continuously go through the whole jour-
nal:

3.2. OpenLMI server components 213

http://www.freedesktop.org/software/systemd/man/systemd-journald.service.html

OpenLMI Documentation, Release latest

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
inst = c.root.cimv2.LMI_JournalMessageLog.first_instance()
r = inst.PositionToFirstRecord()
iter_id = r.rparams[’IterationIdentifier’]
while True:

x = inst.GetRecord(IterationIdentifier=iter_id, PositionToNext=True)
if x.rval != 0:

break
print "".join(map(chr, x.rparams[’RecordData’]))
iter_id = x.rparams[’IterationIdentifier’]

Sending new message to log

Simple example that uses LMI_JournalLogRecord.create_instance() CIM method to send a new message in the log:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
c.root.cimv2.LMI_JournalLogRecord.create_instance({"CreationClassName": "LMI_JournalLogRecord",

"LogCreationClassName": "LMI_JournalMessageLog",
"LogName": "Journal",
"DataFormat": ""})

Indications

The Journald provider comes with a LMI_JournalLogRecordInstanceCreationIndication class that can be used to
receive indications when new log message is logged in the journal. This way user is notified about system events.

Please see LMIShell Indications API reference for an overview how indications work.

Simple indication listener The following piece of code sets up a simple indication listener and waits for any new
messages. Press Ctrl+C to end the script.

#!/usr/bin/lmishell

from lmi.shell import LMIIndicationListener
import socket
import time
import random

def ind_handler(indication, **kwargs):
print indication["SourceInstance"]["DataFormat"]

c = connect("localhost", "pegasus", "test")

indication_port = random.randint(12000, 13000)
ind_filter = c.root.interop.CIM_IndicationFilter.first_instance(

{"Name": "LMI:LMI_JournalLogRecord:NewErrorMessage"})
listener = LMIIndicationListener("0.0.0.0", indication_port)
uniquename = listener.add_handler("journald_watch-XXXXXXXX", ind_handler)
listener.start()

c.subscribe_indication(
Name=uniquename,

214 Chapter 3. Table of Contents

http://pythonhosted.org/openlmi-tools/shell/indications.html

OpenLMI Documentation, Release latest

Filter=ind_filter,
Destination="http://%s:%d" % (socket.gethostname(), indication_port)

)

try:
while True:

time.sleep(1)
pass

except KeyboardInterrupt:
pass

c.unsubscribe_indication(uniquename)

The above script makes use of pre-defined indication filters. There are three indication filters available by default:

New message event filter When used in indication subscription this will report all newly logged messages:

SELECT * FROM LMI_JournalLogRecordInstanceCreationIndication WHERE
SourceInstance ISA LMI_JournalLogRecord

Filter name "LMI:LMI_JournalLogRecord:NewMessage".

New error message event filter This filter can be used to report all newly logged messages having syslog severity
value less than 4 (“Error”), meaning error messages including more critical ones:

SELECT * FROM LMI_JournalLogRecordInstanceCreationIndication WHERE
SourceInstance ISA LMI_JournalLogRecord AND
SourceInstance.LMI_JournalLogRecord::SyslogSeverity < 4

Filter name "LMI:LMI_JournalLogRecord:NewErrorMessage".

New critical message event filter Similar to the last one except this omits error messages and only reports critical,
alert and emergency messages (see RFC 5424 for syslog severity mapping):

SELECT * FROM LMI_JournalLogRecordInstanceCreationIndication WHERE
SourceInstance ISA LMI_JournalLogRecord AND "
SourceInstance.LMI_JournalLogRecord::SyslogSeverity < 3

Filter name "LMI:LMI_JournalLogRecord:NewCriticalMessage".

Custom event filters Apart from pre-defined indication filters the Journald provider supports custom filters. This
allows user to construct a very detailed filter to satisfy specific needs. The following excerpt from the last example
will make the script to report any errors coming from the “sudo” command:

c.subscribe_indication(
Name=uniquename,
Query="SELECT * FROM LMI_JournalLogRecordInstanceCreationIndication WHERE "

"SourceInstance ISA LMI_JournalLogRecord AND "
"SourceInstance.LMI_JournalLogRecord::SyslogSeverity < 4 AND "
"SourceInstance.LMI_JournalLogRecord::SyslogIdentifier = ’sudo’",

Destination="http://%s:%d" % (socket.gethostname(), indication_port)
)

3.2. OpenLMI server components 215

http://tools.ietf.org/html/rfc5424

OpenLMI Documentation, Release latest

3.2.6 Locale Provider

OpenLMI Locale is CIM provider for managing Linux locale settings (using the systemd/localed D-Bus interface).

It allows to set system locale represented by environment variables (LANG, LC_CTYPE, LC_NUMERIC, LC_TIME,
LC_COLLATE, LC_MONETARY, LC_MESSAGES, LC_PAPER, LC_NAME, LC_ADDRESS, LC_TELEPHONE,
LC_MEASUREMENT and LC_IDENTIFICATION), set the default key mapping of the X11 servers (keyboard lay-
outs, model, variant and options) and the default key mapping for virtual console.

If you set a new system locale with SetLocale() method, all old system locale settings will be dropped, and the new
settings will be saved to disk. It will also be passed to the system manager, and subsequently started daemons will
inherit the new system locale from it.

Note that already running daemons will not learn about the new system locale.

Also note that setting key mapping with SetVConsoleKeyboard() method instantly applies the new keymapping to the
console, while setting the key mapping of X11 server using SetX11Keyboard() method simply sets a default that may
be used by later sessions.

Contents:

Usage

Some common use cases are described in the following parts.

Getting locale settings

Create connection, get instance (assuming the default namespace ‘root/cimv2’ is used):

c = connect("https://myhost")
optionally create namespace alias
ns = c.root.cimv2
locale = ns.LMI_Locale.first_instance()

Print what you’re interested in:

get LANG setting
print locale.Lang
get X11Layouts
print locale.X11Layouts
get VConsoleKeymap
print locale.VConsoleKeymap

Or print everything:

get all available settings
locale.doc()

Setting system locale

Set LANG and/or set individual locale variables. Lang, LCCType, LCAddress, LCNumeric, LCTelephone, LCCol-
late, LCPaper, LCMonetary, LCTime, LCMessages, LCIdentification, LCName and LCMeasurement properties cor-
respond to likewise named Linux locale environmental variables:

216 Chapter 3. Table of Contents

http://www.freedesktop.org/wiki/Software/systemd/localed/

OpenLMI Documentation, Release latest

set LANG (LANG value is used also for all other locale categories by default)
locale.SetLocale(Lang="en_US.UTF-8")
set LANG and set different value for LC_TELEPHONE
note that SetLocale() clears previous setting - if you want to preserve
LANG value, you have to set it again
locale.SetLocale(Lang="en_US.UTF-8",LCTelephone="cs_CZ.UTF-8")

Setting default key mapping of the X11 servers

Set default key mapping for X11 server:

locale.SetX11Keyboard(Layouts="de")

Optionally set keyboard model and variant:

locale.SetX11Keyboard(Layouts="us",Model="dellsk8125",Variant="qwertz")

Set more than one layout and set option for switching between them:

locale.SetX11Keyboard(Layouts="us,cz,de",Options="grp:alt_shift_toggle")

You can set Convert parameter to ‘True’, mapping for virtual console will be set also then (nearest console keyboard
setting for the chosen X11 setting):

locale.SetX11Keyboard(Layouts="us",Convert="True")

Setting default key mapping of the virtual console

Set default key mapping for virtual console:

locale.SetVConsoleKeyboard(Keymap="us")

Again, setting Convert to ‘True’ will set the nearest X11 keyboard setting for the chosen console setting:

locale.SetVConsoleKeyboard(Keymap="us",Convert="True")

3.2.7 LogicalFile Provider

OpenLMI LogicalFile is a CIM provider which provides a way to read information about files and directories. The
provider also allows to traverse the file hierarchy, create and remove empty directories.

The provider implements a part of the CIM System schema (sections “Local File Systems” and “Unix System”).

Contents:

Usage

There are two basic types of classes in the LogicalFile provider.

CIM_LogicalFile subclasses:

• LMI_FIFOPipeFile

• LMI_UnixDeviceFile

• LMI_UnixDirectory

3.2. OpenLMI server components 217

http://dmtf.org/standards/cim/schemas

OpenLMI Documentation, Release latest

• LMI_UnixSocket

• LMI_DataFile

• LMI_SymbolicLink

Subclasses derived from CIM_LogicalFile represent basic types of files and their system independent properties, such
as if the file is readable or its modification time. The classes’ names are self-explanatory. LMI_SymbolicLink represents
symbolic link files, LMI_UnixDeviceFile represents unix device files, etc.

The other type of class is LMI_UnixFile. It is used in the Unix-like environment. Its properties are tied to the system
– Linux in our case. For example, the group id of the owner or the inode number are among those properties.

To provide ways to connect the file subclasses together, LogicalFile also defines a few associations.

Association classes:

• LMI_RootDirectory

• LMI_FileIdentity

• LMI_DirectoryContainsFile

LMI_RootDirectory is used to connect the computer system to its root directory.

LMI_FileIdentity associates the system-independent CIM_LogicalFile subclasses to their respective LMI_UnixFile
equivalents that are dependent on the system.

LMI_DirectoryContainsFile serves as a tool to show contents of a directory. Note that directory is usually just a type
of file.

Deviations from the schema

No classes that represent files have the EnumerateInstances method implemented. The reason for this is that
it would be very resource intensive to list all the files on the given filesystem. Even more so, for example, all the
symlinks on the filesystem. For that reason, every LogicalFile class implements only its GetInstance method.

The objectpath of the logical file classes consists of these properties:

• CSCreationClassName

• CSName

• FSCreationClassName

• FSName

• CreationClassName (LFCreationClassName for LMI_UnixFile)

• Name (LFName for LMI_UnixFile)

When getting an instance, it’s usually required that all of the key properties are specified. However, it is impossible, or
at least needlessly complicated, to know some of them when querying remote machines. For example, if I want to see
information about the file ‘/home/user/myfile’ on a remote computer, I don’t want to specify the filesystem it resides
on or the type of the file.

Therefore, the only mandatory key properties are CSCreationClassName, CSName and Name (of LFName in case of
LMI_UnixFile). FSName, FSCreationClassName and CreationClassName are ignored. They are correctly filled in
after the instance has been properly returned.

To have an entry point into the Unix filesystems, an association has been added. It binds the computer system and its
root directory. See LMI_RootDirectory.

LMI_UnixFile has been extended to hold additional properties. Currently, those are SELinuxCurrentContext and
SELinuxExpectedContext. Should there be need for more additions, this class can be easily extended.

218 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Getting files

All further code assumes that a connection object has been created and the default namespace (root/cimv2) is used.
Also, the system’s instance must have been acquired.

plain http connections will likely be refused
c = connect(’https://myhost’)
namespace alias for convenience
ns = c.root.cimv2
system = ns.PG_ComputerSystem.first_instance()

Get an instance of the home directory:

name_dict = {’CSCreationClassName’:system.classname,
’CSName’:system.name,
’CreationClassName’:’ignored’,
’FSCreationClassName’:’ignored’,
’FSName’:’ignored’,
’Name’:’/home/jsynacek’}

name = ns.LMI_UnixDirectory.new_instance_name(name_dict)
home = name.to_instance()
print home.Name

Get an instance of a temporary file and see its selinux contexts using the LMI_FileIdentity:

name_dict = {’CSCreationClassName’:system.classname,
’CSName’:system.name,
’LFCreationClassName’:’ignored’,
’FSCreationClassName’:’ignored’,
’FSName’:’ignored’,
’LFName’:’/var/tmp/data_file’}

name = ns.LMI_UnixFile.new_instance_name(name_dict)
unixdata = name.to_instance()
data = unixdata.first_associator(AssocClass=’LMI_FileIdentity’)
print unixdata.SELinuxCurrentContext
print unixdata.SELinuxExpectedContext
print data.Readable
print data.Writeable
print data.Executable

Get an instance of a symlink and check where it points to:

name_dict = {’CSCreationClassName’:system.classname,
’CSName’:system.name,
’LFCreationClassName’:’ignored’,
’FSCreationClassName’:’ignored’,
’FSName’:’ignored’,
’LFName’:’/home/jsynacek/test-link’}

name = ns.LMI_UnixFile.new_instance_name(name_dict)
unixsymlink = name.to_instance()
symlink = unixsymlink.first_associator(AssocClass=’LMI_FileIdentity’)
print symlink.TargetFile

Association classes examples

List a directory:

3.2. OpenLMI server components 219

OpenLMI Documentation, Release latest

files = home.associators(AssocClass=’LMI_DirectoryContainsFile’)
for f in sorted(files, key=lambda x: x.Name):

print f.Name

Get the root directory:

root = system.first_associator(AssocClass=’LMI_RootDirectory’)
print root.Name

Note: For a more complex example of how to use the LogicalFile provider, please refer to the OpenLMI LogicalFile
script.

Configuration

Configuration is stored in /etc/openlmi/logicalfile/logicalfile.conf.

In addition to common configuration options, this provider can be configured to allow or deny various filesystem
operations. Default configuration:

[LMI_UnixDirectory]
Allow user to create directories. (default = True)
AllowMkdir=True

Allow user to remove empty directories. (default = True)
AllowRmdir=True

[LMI_SymbolicLink]
Allow user to create symbolic links. (default = False)
AllowSymlink=False

Options and their values are self-explanatory.

3.2.8 Power Management

OpenLMI Power Management Provider allows to manage power states of the managed system. Key functionality is
ability to reboot, power off, suspend and hibernate managed system.

This provider is based on following DMTF standard:

• DSP1027 - Power State Management Profile

The knowledge of this standard is not necessary, but it can help a lot.

Table of Contents

Usage

Figure 3.2: Class diagram for Power Management provider.

Base class of this provider is LMI_PowerManagementService. This class has method RequestPowerStateChange that
can be used for changing between power states.

For list of available power states, see property PowerStatesSupported of the class LMI_PowerManagementCapabilities

220 Chapter 3. Table of Contents

https://github.com/openlmi/openlmi-scripts/tree/master/commands/logicalfile/lmi/scripts/logicalfile
https://github.com/openlmi/openlmi-scripts/tree/master/commands/logicalfile/lmi/scripts/logicalfile
http://dmtf.org
http://dmtf.org/sites/default/files/standards/documents/DSP1027_2.0.0.pdf

OpenLMI Documentation, Release latest

All example scripts are for lmishell. See it’s documentation on OpenLMI page.

We also assume that lmishell is connected to the CIMOM and the connection is stored in connection variable:

connection = connect("server", "username", "password")
ns = connection.root.cimv2

Enumeration of available power states

To see the available power states on given managed system, use following:

capabilities = ns.LMI_PowerManagementCapabilities.first_instance()
for state in capabilities.PowerStatesSupported:

print ns.LMI_PowerManagementCapabilities.PowerStatesSupportedValues.value_name(state)

Setting the power state

Let’s say we want to power off the system gracefully:

Check if the power state is available first
capabilities = ns.LMI_PowerManagementCapabilities.first_instance()
if not ns.LMI_PowerManagementCapabilities.PowerStatesSupportedValues.OffSoftGraceful in capabilities.PowerStatesSupported:

print "OffSoftGraceful state is not supported"
return

Get the PowerManagement service
service = ns.LMI_PowerManagementService.first_instance()
Invoke the state change
service.RequestPowerStateChange(PowerState=ns.LMI_PowerManagementCapabilities.PowerStatesSupportedValues.OffSoftGraceful)

Note that the job returned from this function is not much usable because when system is shutting down, the CIMOM
is terminated as well.

3.2.9 Realmd Provider

OpenLMI Realmd is a CIM provider for managing the systems Active Direcory or Kerberos realms membership
through the Realmd system service.

It provides only the basic functionality: join or leave a domain and query the domain membership.

Contents:

Usage

The OpenLMI Realmd provider allows for basic configuration of the managed systems Active Directory or Kerberos
realms membership. It relies on the Realmd system service.

Querying a domain membership

To verify if the remote machine is part of the domain, it is enough to query the value of the
LMI_RealmdService.Domain property: If non-NULL it contains the name of the joined domain:

3.2. OpenLMI server components 221

https://fedorahosted.org/openlmi/wiki/shell
https://fedorahosted.org/openlmi/

OpenLMI Documentation, Release latest

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
realmsrv = c.root.cimv2.LMI_RealmdService.first_instance()
dom = realmsrv.Domain
if (dom):

print "Joined to the domain: " + dom
else:

print "No domain joined."

Joining a domain

The LMI_RealmdService.JoinDomain() method can be used to join a domain. It takes three mandatory arguments:
username and password for the authentication and the domain name:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
realmsrv = c.root.cimv2.LMI_RealmdService.first_instance()
realmsrv.JoinDomain(Password=’ZisIzSECRET’, User=’admin’, Domain=’AD.EXAMPLE.COM’)

Leaving a domain

Similarly to joining a domain the LMI_RealmdService.LeaveDomain() can be used to leave the joined domain. It
requires the same arguments as the JoinDomain() method:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
realmsrv = c.root.cimv2.LMI_RealmdService.first_instance()
realmsrv.LeaveDomain(Password=’ZisIzSECRET’, User=’admin’, Domain=’AD.EXAMPLE.COM’)

3.2.10 SELinux Provider

OpenLMI SELinux is a CIM provider which provides a way to read and set SELinux values, such as booleans, ports,
or file labels.

The provider doesn’t implement any CIM standard schema.

Contents:

Introduction

SELinux provider model is displayed in the following figure. Classes with the blue mark are part of the provider.

Figure 3.3: SELinux provider model

Basic SELinux entities are represented by LMI_SELinuxElement. It is a basic class from which concrete SELinux
items are derived. All SELinux elements use their InstanceID as a primary identifier. Concrete cases are describe
below.

LMI_SELinuxBoolean represents an SELinux boolean on a system. Concrete boolean instances are uniquely identified
by their InstanceID in the form of LMI:LMI_SELinuxBoolean:<boolean name>.

222 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

LMI_SELinuxPort is a class encompassing multiple individual network ports, or even their ranges. Its InstanceID is
in the form of LMI:LMI_SELinuxPort:<type>:<port name>. Port type can be either TCP or UDP.

To read SELinux file labels, the LMI_UnixFile has to be used. This class is part of the LogicalFile provider.

LMI_SELinuxService is the main class that allows users to modify SELinux state on the system. The class also
provides some basic information about SELinux. It is connected to the computer system on which the provider
resides by LMI_HostedSELinuxService. All instances of LMI_SELinuxElement are associated with the service via
LMI_SELinuxServiceHasElement.

Every method that is provided by LMI_SELinuxService returns an LMI_SELinuxJob instance, because the actions that
are executed by those methods are expected to take a long time. Which of the concrete LMI_SELinuxElement instances
are operated on by a job instance is determined by LMI_AffectedSELinuxJobElement.

Usage

All further code assumes that a connection object has been created and the default namespace (root/cimv2) is used.
Also, the LMI_SELinuxService instance must have been acquired.

c = connect("https://myhost", "user", "secret")
service = c.root.cimv2.LMI_SELinuxService.first_instance()
system = c.root.cimv2.PG_ComputerSystem.first_instance()

As a convenience helper function for further use, lmi_unixfile_instance_name is defined. It provides an easy way to
get file references for methods that require an LMI_UnixFile reference as a parameter.

def lmi_unixfile_instance_name(path):
props = {"CSName":system.name,

"CSCreationClassName":system.classname,
"FSCreationClassName":"ignored",
"FSName":"ignored",
"LFCreationClassName":"ignored",
"LFName":path}

return c.root.cimv2.LMI_UnixFile.new_instance_name(props)

SELinux state

General information about SELinux is available via the service instance:

def state_to_str(state):
if state == 0: return "Disabled"
elif state == 1: return "Permissive"
elif state == 2: return "Enabled"
else: return "Unknown"

print "Policy version: %s" % service.PolicyVersion
print "Policy type: %s" % service.PolicyType
print "Current state: %s" % state_to_str(service.SELinuxState)
print "Persistent state: %s" % state_to_str(service.SELinuxDefaultState)

Set service state, for example, set the default (persistent) state to Enforcing:

2 == Enforcing
service.SetSELinuxState({"NewState":2,

"MakeDefault":True})

3.2. OpenLMI server components 223

http://www.openlmi.org/sites/default/files/doc/admin/openlmi-providers/latest/logicalfile/index.html

OpenLMI Documentation, Release latest

Booleans

List all booleans and print their current and default values:

booleans = c.root.cimv2.LMI_SELinuxBoolean.instances()
for boolean in booleans:

print "%-50s (%s, %s)" % (boolean.ElementName, boolean.State, boolean.DefaultState)

To enable the httpd_use_sasl boolean in the current runtime, but not permanently:

target = c.root.cimv2.LMI_SELinuxBoolean.new_instance_name({"InstanceID":"LMI:LMI_SELinuxBoolean:httpd_use_sasl"})
res = service.SetBoolean({"Target":target,

"Value":True,
"MakeDefault":False})

Ports

List all ports:

ports = c.root.cimv2.LMI_SELinuxPort.instances()
for port in sorted(ports):

print "%-30s %-10s %s" % (port.ElementName,
"tcp" if port.Protocol else "udp",
", ".join(port.Ports))

Label the TCP port 8080 with http_port_t:

target = c.root.cimv2.LMI_SELinuxPort.new_instance_name({"InstanceID":"LMI:LMI_SELinuxPort:TCP:http_port_t"})
service.SetPortLabel({"Target":target,

"PortRange":"8080"})

It is also possible to specify PortRange as an actual range, for example “8080-8090”.

File labels

To see what SELinux context a file holds, the LogicalFile provider is used:

target = lmi_unixfile_instance_name("/tmp/file")
file = target.to_instance()
print file.SELinuxCurrentContext
print file.SELinuxExpectedContext

Set a file context:

target = lmi_unixfile_instance_name("/root")
service.SetFileLabel({"Target":target,

"Label":"my_user_u:my_role_r:my_type_t"})

Restore SELinux contexts of all the files in /etc/ recursively:

1 == Restore
target = lmi_unixfile_instance_name("/etc/")
service.RestoreLabels({"Target":target,

"Action":1,
"Recursively":True})

224 Chapter 3. Table of Contents

http://www.openlmi.org/sites/default/files/doc/admin/openlmi-providers/latest/logicalfile/index.html

OpenLMI Documentation, Release latest

3.2.11 Service Provider

OpenLMI Service is CIM provider for managing Linux system services (using the systemd D-Bus interface).

It allows to enumerate system services and get their status, start/stop/restart/... a service and enable/disable a service.

The provider is also able to do event based monitoring of service status (emit indication event upon service property
change).

Contents:

Usage

Some common use cases are described in the following parts.

List services

List all services available on managed machine, print whether the service has been started (TRUE), or stopped (FALSE)
and print status string of the service:

for service in c.root.cimv2.LMI_Service.instances():
print "%s:\t%s" % (service.Name, service.Status)

List only enabled by default services (automatically started on boot). Note that value of EnabledDefault property is
‘2’ for enabled services (and it’s ‘3’ for disabled services):

service_cls = c.root.cimv2.LMI_Service
for service in service_cls.instances():

if service.EnabledDefault == service_cls.EnabledDefaultValues.Enabled:
print service.Name

See available information about the ‘cups’ service:

cups = c.root.cimv2.LMI_Service.first_instance({"Name" : "cups.service"})
cups.doc()

Start/stop service

Start and stop ‘cups’ service, see status:

cups = c.root.cimv2.LMI_Service.first_instance({"Name" : "cups.service"})
cups.StartService()
print cups.Status
cups.StopService()
print cups.Status

Enable/disable service

Disable and enable ‘cups’ service, print EnabledDefault property:

cups = c.root.cimv2.LMI_Service.first_instance({"Name" : "cups.service"})
cups.TurnServiceOff()
print cups.EnabledDefault
cups.TurnServiceOn()
print cups.EnabledDefault

3.2. OpenLMI server components 225

OpenLMI Documentation, Release latest

Indications

OpenLMI Service provider is able (using indication manager and polling) to emit indication event upon service (i. e.
LMI_Service instance) property modification (LMI_ServiceInstanceModificationIndication).

This is useful mainly for being notified when a service has changed state (has been started, or stopped).

In order to receive indications, create instances of CIM_IndicationFilter (which indications should be delivered),
CIM_IndicationHandler (what to do with those indications) and CIM_IndicationSubscription (links filter and handler
together).

The following example in LMIShell does it all in one step:

c.subscribe_indication(
Name="service_modification",
QueryLanguage="DMTF:CQL",
Query="SELECT * FROM LMI_ServiceInstanceModificationIndication WHERE SOURCEINSTANCE ISA LMI_Service",
CreationNamespace="root/interop",
SubscriptionCreationClassName="CIM_IndicationSubscription",
FilterCreationClassName="CIM_IndicationFilter",
FilterSystemCreationClassName="CIM_ComputerSystem",
FilterSourceNamespace="root/cimv2",
HandlerCreationClassName="CIM_IndicationHandlerCIMXML",
HandlerSystemCreationClassName="CIM_ComputerSystem",
Destination="http://localhost:12121"

)

Indications are sent to the location specified in ‘Destination’ argument.

3.2.12 Software Provider

Contents:

Introduction

OpenLMI Software provider allows to query and manipulate software package database on remote hosts. They utilize
YUM (Yellowdog Updater Modified) which is a standard package manager for several GNU/Linux distributions. They
provide the subset of its functionality.

RPM database, repositories and the package manager itself are modeled with CIM classes according to several DMTF
profiles described later. To make a query on database, install, update a remove some RPM package means to trigger
some operation on one or several CIM classes. This page explains the mapping of mentioned objects to corresponding
classes.

Figure 3.4: This model shows classes representing various objects taking role in software management provided by
OpenLMI Software provider.

Classes with the blue background belong to Software Inventory Profile. Classes painted yellow belong to Software
Update Profile that builds on the former one. Classes painted red/pink are extensions not beloning to any DMTF
profile.

226 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Mapping of objects to CIM classes

RPM package [LMI_SoftwareIdentity] Is represented by LMI_SoftwareIdentity. It’s identified by a single
key property called LMI_SoftwareIdentity.InstanceID. This is a composition of some CIM related prefix with
package’s NEVRA string. It’s the similar string you may see, when listing package with rpm tool:

$ rpm -qa ’openlmi-*’ vim-enhanced
openlmi-python-base-0.3.0_5_gf056906-2.fc21.noarch
openlmi-providers-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-indicationmanager-libs-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-account-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-service-0.3.0_5_gf056906-2.fc21.x86_64
vim-enhanced-7.4.027-2.fc20.x86_64
openlmi-logicalfile-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-storage-0.6.0-2.fc20.noarch
openlmi-python-providers-0.3.0_5_gf056906-2.fc21.noarch
openlmi-providers-debuginfo-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-software-0.3.0_5_gf056906-2.fc21.noarch

except for Epoch part, which is omitted by rpm tool but is required to be present in InstanceID by instru-
menting provider. To get the expected output, the above command needs to be modified:

$ rpm --qf ’%{NAME}-%{EPOCH}:%{VERSION}-%{RELEASE}.%{ARCH}\n’ -qa ’openlmi-*’ | sed ’s/(none)/0/’
openlmi-python-base-0:0.3.0_5_gf056906-2.fc21.noarch
openlmi-providers-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-indicationmanager-libs-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-account-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-service-0:0.3.0_5_gf056906-2.fc21.x86_64
vim-enhanced-2:7.4.027-2.fc20.x86_64
openlmi-logicalfile-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-storage-0:0.6.0-2.fc20.noarch
openlmi-python-providers-0:0.3.0_5_gf056906-2.fc21.noarch
openlmi-providers-debuginfo-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-software-0:0.3.0_5_gf056906-2.fc21.noarch

Some RPM packages do not define Epoch part, which means its 0 although rpm returns (none).

When installing, updating or removing package, we operate upon an instance or object path of this class.

See also:

Identifying software identity

Repository [LMI_SoftwareIdentityResource] Is represented by LMI_SoftwareIdentityResource. What dis-
tinguishes particular repository from others on the same system is a LMI_SoftwareIdentityResource.Name key
property. It’s the name of repository written in square brackets in repository config. Not the configuration file
name, not the name option, but a the name of section. See the example of OpenLMI Nightly repository:

$ cat /etc/yum.repos.d/openlmi-nightly.repo
[openlmi-nightly]
name=OpenLMI Nightly
baseurl=http://openlmi-rnovacek.rhcloud.com/rpm/rawhide/
gpgcheck=0
enabled = 1

The Name property of corresponding Software Identity Resource will be openlmi-nightly.

Installed file [LMI_SoftwareIdentityFileCheck] Is represented by LMI_SoftwareIdentityFileCheck. Rep-
resents a verification check of particular file installed by RPM package. It contains attributes being checked,
like:

3.2. OpenLMI server components 227

OpenLMI Documentation, Release latest

• User ID, Group ID

• Checksum

• Link Target

• File Mode and others

Each is present twice. One property represents the current value of installed file and the other the value stored
in RPM package, that the file should have. The later properties have Original suffix. So for example:

• UserID vs UserIDOriginal

• FileChecksum vs FileChecksumOriginal

Mentioned attributes are compared when the package verification is done. Single file can also be easily checked.
Either by running LMI_SoftwareIdentityFileCheck.Invoke() method on particular object path or by testing the
FailedFlags property for emptiness. If its empty, the file or directory passed the verification test.

RPM database [LMI_SystemSoftwareCollection] Is represented by LMI_SystemSoftwareCollection. Ad-
ministrator probably won’t be interested in this class. The LMI_MemberOfSoftwareCollection association class
associates this collection with available and installed Software Identities. It can not be enumerated — due to the
same reason as in case of LMI_SoftwareIdentity (see the explanation in Package searching).

YUM package manager [LMI_SoftwareInstallationService] Is represented by LMI_SoftwareInstallationService.
Allows to query the database, install, update, verify and remove RPM packages. All of this can be achieved by
invocations of its methods:

FindIdentity() Allows to query the database for matching packages.

InstallFromSoftwareIdentity() Allows to install, update or remove RPM package represented by an
instance of Software Identity.

InstallFromURI() Allows to install or update RPM package located with particular URI string.

VerifyInstalledIdentity(). Runs a verification check on given Software Identity.

See also:

Examples on using above methods:

• Package installation

• Package update

• Package removal

• Package verification

DMTF profiles

OpenLMI Software providers implement two DMTF profiles:

• Software Inventory Profile

• Software Update Profile

Software Inventory Profile

Implemented DMTF version: 1.0.1

Described by DSP1023

228 Chapter 3. Table of Contents

http://www.dmtf.org/sites/default/files/standards/documents/DSP1023_1.0.1.pdf

OpenLMI Documentation, Release latest

The Software Inventory Profile describes the CIM schema elements required to provide an inventory of installed BIOS,
firmware, drivers, and related software in a managed system. This profile also describes the CIM schema elements
required to represent the software that can be installed on a managed system.

Not implemented optional features This implementation does not support:

Representing a Software Bundle Software bundle is represented by LMI_SoftwareIndentity instance
having "Software Bundle" value present in its Classifications property. It shall prep-
resent software groups. It extends the profile for subclasses of CIM_OrderedComponent.

Representing Installation Dependencies Dependencies between software packages are also unimple-
mented. This also extends the profile for subclasses of CIM_OrderedDependency referencing
CIM-SoftwareIdentity instances.

Deviations

Version Comparison Version comparison is based on different approach than in Software Inventory Profile where
the following properties are present to uniquely specify package version:

• uint16 MajorVersion

• uint16 MinorVersion

• uint16 RevisionNumber

• uint16 BuildNumber

And also a VersionString property which is a composition of previous ones separed with dots.

Unfortunately versioning of RPM packages is incompatible with this scheme. Version of RPM package is composed
of following properties:

• uint32 Epoch

• string Version

• string Release

Where Version and Release can contain arbitrary set of characters 17. These attributes were added to
LMI_SoftwareIdentity class and will be filled for every RPM package. On the other hand MajorVersion,
MinorVersion, RevisionNumber and BuildNumber will not be filled.

This implementetion composes VersionString in following way:

<Epoch>:<Version>-<Release>.<Architecture>

The algorithm for comparing two RPM packages version is following:

1. Compare the Epoch (which is a number) of both packages. The one with higher epoch is newer. If they match,
continue to point 2.

2. Compare their Version attributes with rpmvercmp algorithm. Package with larger Version (according to
rpmvercmp) is newer. If they match, continue to point 3.

3. Compare their Release attributes with rpmvercmp algorithm. Package with larger Release string is newer.
Otherwise packages have the same version.

Relationships between Software Identity and Managed Element are not modeled. RPM package database does
not provide such informations that would allow to associate particular package with a piece of hardware it relates to.

17 Precisely Releasemust match following regular expression r"[\\w.+{}]+". Version allows also tilde character: r"[~\\w.+{}]+".

3.2. OpenLMI server components 229

http://fedoraproject.org/wiki/Tools/RPM/VersionComparison
http://fedoraproject.org/wiki/Tools/RPM/VersionComparison
http://fedoraproject.org/wiki/Tools/RPM/VersionComparison

OpenLMI Documentation, Release latest

Querying for packages Since enumeration of Software Identities is disabled due to a huge amount of data generated
by large package database, the query execution on them is also disallowed 18. The only way how to search for packages
is using the method LMI_SoftwareInstallationService.FindIdentity.

Identifying software identity InstanceID key property is the one and only identification string of LMI-
SoftwareIdentity instances representing RPM packages. It’s composed of following strings:

LMI:LMI_SoftwareIdentity:<Name>-<Epoch>:<Version>-<Release>.<Architecture>

Where the prefix "LMI:LMI_SoftwareIdentity:" is compared case-insensitively. The rest is also known as a
NEVRA. When calling GetInstance() on this class, the "<Epoch>:" part can be omitted in the InstanceID
key property of passed InstanceName in case the epoch is zero.

Example Take for example package vim-enhanced installed on Fedora 18:

$ yum info vim-enhanced
Installed Packages
Name : vim-enhanced
Arch : x86_64
Epoch : 2
Version : 7.4.027
Release : 2.fc18
Size : 2.1 M
Repo : installed
From repo : updates-testing

The output has been shortened. This package is represented by an instance of LMI_SoftwareIdentity with
InstanceID equal to:

LMI:LMI_SoftwareIdentity:vim-enhanced-2:7.4.027-2.fc18.x86_64

Profile extensions List of additional attributes of LMI_SoftwareIdentity:

• version properties mentioned above (version_properties)

• string Architecture - Target machine architecture. Packages with architecture independent content will
have "noarch" value set.

List of additional attributes of LMI_SoftwareIdentityResource:

Cost [sint32] Relative cost of accessing this repository.

GPGCheck [boolean] Whether the GPG signature check should be performed.

TimeOfLastUpdate [datetime] Time of repository’s last update on server.

Class overview
18 Because internally the query is executed upon the list obtained by enumeration of instances.

230 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Class-name Parent_class Type
LMI_SoftwareIdentity CIM_SoftwareIdentity Plain
LMI_SystemSoftwareCollection CIM_SystemSpecificCollection Plain
LMI_SoftwareIdentityResource CIM_SoftwareIdentityResource Plain
LMI_HostedSoftwareCollection CIM_HostedCollection Association
LMI_InstalledSoftwareIdentity CIM_InstalledSoftwareIdentity Association
LMI_HostedSoftwareIdentityResource CIM_HostedAccessPoint Association
LMI_ResourceForSoftwareIdentity CIM_SAPAvailableForElement Association
LMI_MemberOfSoftwareCollection CIM_MemberOfCollection Aggregation

See also:

Class model in Introduction where above classes are coloured blue.

Software Update Profile

Implemented DMTF version: 1.0.0

Described by DSP1025.

The Software Update Profile describes the classes, associations, properties, and methods used to support the installa-
tion and update of BIOS, firmware, drivers and related software on a managed element within a managed system.

Implemented optional features This implementation supports:

Advertising the Location Information of a Software Identity This optional feature provides associ-
ation of Software Identity to its resource. In other words each available package is asso-
ciated to a corresponding repository defined in configuration files of YUM. Repositories are
represented with LMI_SoftwareIdentityResource and are associated to LMI_SoftwareIdentity via
LMI_ResourceForSoftwareIdentity.

Not implemented features Following methods are not implemented:

• CIM_SoftwareInstallationService.InstallFromByteStream

• LMI_SoftwareInstallationService.CheckSoftwareIdentity

Profile extensions

RPM package verification Software Inventory and Softare Update profiles don’t allow for software verification.
That is quite useful and desired operation done on RPM packages. Following additions has been added to provide
such a functionality.

Following classes have been added:

LMI_SoftwareIdentityFileCheck Represents single file contained and installed by RPM package. It con-
tains properties allowing for comparison of installed file attributes with those stored in a package
database. In case those attributes do not match, file fails the verification test.

LMI_SoftwareIdentityChecks Associates Software Identity File Check to corresponding Software Iden-
tity.

Following methods have been added:

LMI_SoftwareInstallationService.VerifyInstalledIdentity This allows to run verification test on particu-
lar Software Identity and returns a list of files that failed.

3.2. OpenLMI server components 231

http://www.dmtf.org/sites/default/files/standards/documents/DSP1025_1.0.0.pdf

OpenLMI Documentation, Release latest

Package searching On modern Linux distributions we have thousands of software packages available for installation
making it nearly impossible for CIMOM to enumerate them all because it consumes a lot of resources. That’s why the
EnumerateInstances() and EnumerateInstanceNames() calls have been disabled Software Identities.
As a consequence the ExecQuery() call is prohibited also.

But the ability to search for packages is so important that a fallback solution has been provided. Method FindIdentity()
has been added to LMI_SoftwareInstallationService allowing to create complex queries on package database.

Class overview
Class-name Parent_class Type
LMI_SoftwareInstallationService CIM_SoftwareInstallationService Plain
LMI_SoftwareJob LMI_ConcreteJob Plain
LMI_SoftwareInstallationJob LMI_SoftwareJob Plain
LMI_SoftwareVerificationJob LMI_SoftwareJob Association
LMI_SoftwareMethodResult LMI_MethodResult Association
LMI_SoftwareIdentityFileCheck CIM_FileSpecification Association
LMI_SoftwareInstallationServiceAffectsElement CIM_ServiceAffectsElement Association
LMI_SoftwareIdentityChecks Aggregation
LMI_HostedSoftwareInstallationService CIM_HostedService Plain
LMI_AffectedSoftwareJobElement CIM_AffectedJobElement Plain
LMI_OwningSoftwareJobElement LMI_OwningJobElement Plain
LMI_AssociatedSoftwareJobMethodResult LMI_AssociatedJobMethodResult Plain

See also:

Class model in Introduction where above classes are coloured blue.

Configuration

There are various options affecting behaviour of OpenLMI Software provider. All of them can be fine-tuned using two
configuration files. The main one is located at:

/etc/openlmi/software/software.conf

The other one is a global configuration file for all providers in OpenLMI project and serves as a fallback, for options
not specified in the main one. It’s located in:

/etc/openlmi/openlmi.conf

Since this is a common setup for all OpenLMI providers, administator can specify options common to all in
the global configuration file, while the values specific for particular provider can be overriden in its main one
(/etc/openlmi/${provider}/${provider}.conf).

Treating boolean values

Options expecting boolean values treat following strings as valid True values:

• True

• 1

• yes

• on

232 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

While the following are considered False:

• 0

• no

• False

• off

These words are checked in a case-insensitive way. Any other value isn’t considered valid 19.

Options

Follows a list of valid options with sections enclosed in square brackets.

CIM options

[CIM] Namespace [defaults to root/cimv2] Is a CIM namespace, where CIM classes of this
provider are registered.

[CIM] SystemClassName [defaults to PG_ComputerSystem] Sets the class name used to re-
fer to computer system. Different cimmoms can instrument variously named computer sys-
tems and some may not instrument any at all. Sfcb is an example of the later, it needs
the sblim-cmpi-base package installed providing the basic set of providers containing
Linux_ComputerSystem. So in case you run a Sfcb or you preferr to use providers from
sblim-cmpi-base package, you need to change this to Linux_ComputerSystem.

YUM options Options related to the use of YUM API and its configuration.

[Yum] LockWaitInterval [defaults to 0.5] Number of seconds to wait before next try to lock yum
package database. This applies, when yum database is locked by another process.

[Yum] FreeDatabaseTimeout = 60 [defaults to 60] Number of seconds to keep package cache
in memory after the last use (caused by user request). Package cache takes up a lot of memory.

Log options

[Yum] Level [defaults to ERROR] Can be set to one of the following:

• CRITICAL

• ERROR

• WARNING

• INFO

• DEBUG

• TRACE_WARNING

• TRACE_INFO

• TRACE_VERBOSE

19 Default value will be used as a fallback. This applies also to other non-boolean options in case of invalid value.

3.2. OpenLMI server components 233

http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Sfcb

OpenLMI Documentation, Release latest

It specifies the minimum severity of messages that shall be logged. Messages having DEBUG or more
severe level are sent to CIMOM using standard function CMLogMessage(). Tracing messages
(whose level names start with TRACE_ use the CMTraceMessage() instead.

Please consult the documentation of your CIMOM to see, how these messages can be treated and
logged to different facilities.

Note: This does not have any effect if the [Log] FileConfig option is set.

[Yum] Stderr [defaults to False] Whether to enable logging to standard error output. This does not
affect logging to CIMOM which stays enabled independently of this option.

This is mostly usefull when debugging with CIMOM running on foreground.

Note: This does not have any effect if the [Log] FileConfig option is set.

See also:

Since this accepts boolean values, refer to Treating boolean values for details.

[Yum] FileConfig [defaults to empty string] This option overrides any other logging option. It pro-
vides complete control over what is logged, when and where. It’s a path to a logging configuration
file with format specified in: http://docs.python.org/2/library/logging.config.html#configuration-
file-format Path can be absolute or relative. In the latter case it’s relative to a directory of this
configuration file.

YumWorkerLog options This section is targeted mostly on developpers of OpenLMI Software provider. YUM API
is accessed exclusively from separated process called YumWorker. Because separated process can not send its log
messages to CIMOM, its logging configuration needs to be configured extra.

[YumWorkerLog] OutputFile [defaults to empty string] This is an absolute or relative path to a
file, where the logging will be done. Without this option set, logging of YumWorker is disabled
(assuming the [YumWorkerLog] FileConfig option is also unset).

[YumWorkerLog] Level [defaults to DEBUG] This has generally the same meaning as Level in
previous section (Log options). Except this affects only logging of YumWorker process.

[YumWorkerLog] FileConfig [defaults to empty string] Similar to the FileConfig option in
Log options. This overrides any other option in this section.

Usage

Examples for common use cases listed below are written in lmishell. Where appropriate, an example for lmi meta-
command, which is a part of OpenLMI-Scripts project, is added. Please refer to its documentation for installation
notes and usage.

Note: Examples below are written for openlmi-tools version 0.9.

Listing installed packages

Simple Simple but very slow way:

234 Chapter 3. Table of Contents

http://docs.python.org/2/library/logging.config.html#configuration-file-format
http://docs.python.org/2/library/logging.config.html#configuration-file-format
https://fedorahosted.org/openlmi/wiki/shell
https://fedorahosted.org/openlmi/wiki/scripts

OpenLMI Documentation, Release latest

c = connect("host", "user", "pass")
cs = c.root.cimv2.PG_ComputerSystem.first_instance()
for identity in cs.associators(

AssocClass="LMI_InstalledSoftwareIdentity",
Role="System",
ResultRole="InstalledSoftware",
ResultClass="LMI_SoftwareIdentity"):

print(identity.ElementName)

Note: Here we use PG_ComputerSystem as a class representing computer system. It is part of
sblim-cmpi-base package, which is obsoleted. If you use Pegasus as your CIMOM you may safely switch to
PG_ComputerSystem.

See also:

LMI_InstalledSoftwareIdentity

Faster This is much faster. Here we enumerate association class LMI_InstalledSoftwareIdentity and get information
from its key properties.

c = connect("host", "user", "pass")
for iname in c.root.cimv2.LMI_InstalledSoftwareIdentity.instance_names():

print(iname.InstalledSoftware.InstanceID
[len("LMI:LMI_SoftwareIdentity:"):])

Note: Whole instance is not available. To get it from association instance name, you need to add:

iname.InstalledSoftware.to_instance()

lmi meta-command
lmi -h $HOST sw list pkgs

Listing repositories

lmishell
c = connect("host", "user", "pass")
for repo in c.root.cimv2.LMI_SoftwareIdentityResource.instance_names():

print(repo.Name)

See also:

LMI_SoftwareIdentityResource

lmi meta-command
lmi -h $HOST sw list pkgs

Listing available packages

lmishell Enumerating of LMI_SoftwareIdentity is disabled due to a huge amount of data being generated. That’s
why we enumerate them for particular repository represented by LMI_SoftwareIdentityResource.

3.2. OpenLMI server components 235

OpenLMI Documentation, Release latest

c = connect("host", "user", "pass")
for repo in c.root.cimv2.LMI_SoftwareIdentityResource.instances():

if repo.EnabledState != c.root.cimv2.LMI_SoftwareIdentityResource. \
EnabledStateValues.Enabled:

continue # skip disabled repositories
print(repo.Name)
for identity in repo.associator_names(

AssocClass="LMI_ResourceForSoftwareIdentity",
Role="AvailableSAP",
ResultRole="ManagedElement",
ResultClass="LMI_SoftwareIdentity"):

print(" " + identity.InstanceID[len("LMI:LMI_SoftwareIdentity:"):])

Note: This is not the same as running:

yum list available

which outputs all available, not installed packages. The example above yields available packages without any regard
to their installation status.

See also:

LMI_ResourceForSoftwareIdentity

lmi meta-command
lmi -h $HOST sw list --available pkgs

Listing files of package

Let’s list files of packages openlmi-tools. Note that package must be installed on system in order to list its files.

lmishell We need to know exact NEVRA 20 of package we want to operate on. If we don’t know it, we can find out
using FindIdentity() method. See example under Searching for packages.

c = connect("host", "user", "pass")
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(

{"InstanceID" : "LMI:LMI_SoftwareIdentity:openlmi-tools-0:0.5-2.fc18.noarch"})
for filecheck in identity.to_instance().associator_names(

AssocClass="LMI_SoftwareIdentityChecks",
Role="Element",
ResultRole="Check",
ResultClass="LMI_SoftwareIdentityFileCheck"):

print("%s" % filecheck.Name)

See also:

LMI_SoftwareIdentityFileCheck

lmi meta-command
lmi -h $HOST sw list files openlmi-tools

20 Stands for Name, Epoch, Version, Release, Architecture. Please refer to Identifying software identity for more details.

236 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Searching for packages

If we know just a fraction of informations needed to identify a package, we may query package database in the
following way.

lmishell

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
let’s find all packages with "openlmi" in Name or Summary without
architecture specific code
ret = service.FindIdentity(Name="openlmi", Architecture="noarch")
for identity in ret.rparams["Matches"]:

we’ve got only references to instances
print identity.Name[len("LMI:LMI_SoftwareIdentity:"):]

See also:

FindIdentity() method

Please don’t use this method to get an instance of package you know precisely. If you know all the identification
details, you may just construct the instance name this way:

c = connect("host", "user", "pass")
iname = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(

{"InstanceID" : "LMI:LMI_SoftwareIdentity:openlmi-software-0:0.1.1-2.fc20.noarch"})
identity = iname.to_instance()

lmi meta-command See help on sw command for more information on this.

lmi -h $HOST sw list pkgs openlmi

Package installation

There are two approaches to package installation. One is synchronous and the other asynchronous.

Synchronous installation This is a very simple and straightforward approach. We install package by creating a new
instance of LMI_InstalledSoftwareIdentity with a reference to some available software identity.

c = connect("host", "user", "pass")
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(

{"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-3.fc19.x86_64"})
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
installed_assoc = c.root.cimv2.LMI_InstalledSoftwareIdentity.create_instance(

properties={
"InstalledSoftware" : identity,
"System" : cs

})

If the package is already installed, this operation will fail with the pywbem.CIMError exception being raised
initialized with CIM_ERR_ALREADY_EXISTS error code.

3.2. OpenLMI server components 237

OpenLMI Documentation, Release latest

Asynchronous installation Method InstallFromSoftwareIdentity() needs to be invoked with desired options. After
the options are checked by provider, a job will be returned representing installation process running at background.
Please refer to Asynchronous Jobs for more details.

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(

{"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-5.fc19.x86_64"})
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
ret = service.InstallFromSoftwareIdentity(

Source=identity,
Target=cs,
these options request to install available, not installed package
InstallOptions=[4] # [Install]
this will force installation if package is already installed
(possibly in different version)
#InstallOptions=[4, 3] # [Install, Force installation]

)

The result can be checked by polling resulting job for finished status:

finished_statuses = {
c.root.cimv2.CIM_ConcreteJob.JobState.Completed

, c.root.cimv2.CIM_ConcreteJob.JobState.Exception
, c.root.cimv2.CIM_ConcreteJob.JobState.Terminated
}

job = ret.rparams["Job"].to_instance()
while job.JobStatus not in finished_statuses:

wait for job to complete
time.sleep(1)
job.refresh()

print c.root.cimv2.LMI_SoftwareJob.JobStateValues.value_name(job.JobState)
get an associated job method result and check the return value
print "result: %s" % job.first_associator(

AssocClass=’LMI_AssociatedSoftwareJobMethodResult’).__ReturnValue
get installed software identity
installed = job.first_associator(

Role=’AffectingElement’,
ResultRole=’AffectedElement’,
AssocClass="LMI_AffectedSoftwareJobElement",
ResultClass=’LMI_SoftwareIdentity’)

print "installed %s at %s" % (installed.ElementName, installed.InstallDate)

You may also subscribe to indications related to LMI_SoftwareInstallationJob and listen for events instead of the
polling done above

As you can see, you may force the installation allowing for reinstallation of already installed package. For more
options please refer to the documentation of this method.

Combined way We can combine both approaches by utilizing a feature of lmishell. Method above can be called in
a synchronous way (from the perspective of script’s code). It’s done like this:

note the use of "Sync" prefix
ret = service.SyncInstallFromSoftwareIdentity(

Source=identity,
Target=cs,
these options request to install available, not installed package
InstallOptions=[4] # [Install]
this will force installation if package is already installed

238 Chapter 3. Table of Contents

http://jsafrane.fedorapeople.org/openlmi-storage/api/0.6.0/concept-job.html#asynchronous-jobs
https://fedorahosted.org/openlmi/wiki/shell

OpenLMI Documentation, Release latest

(possibly in different version)
#InstallOptions=[4, 3] # [Install, Force installation]

)
print "result: %s" % ret.rval

The value of LMI_SoftwareMethodResult .__ReturnValue is placed to the ret.rval attribute. Waiting for job’s
completion is taken care of by lmishell. But we lose the reference to the job itself and we can not enumerate affected
elements (that contain, among other things, installed package).

Installation from URI This is also possible with:

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
ret = service.to_instance().InstallFromSoftwareURI(

Source="http://someserver.com/fedora/repo/package.rpm",
Target=cs,
InstallOptions=[4]) # [Install]

Supported URI schemes are:

• http

• https

• ftp

• file

In the last cast, the file must be located on the remote system hosting the CIMOM.

See also:

InstallFromURI() method

Please refer to Asynchronous installation above for the consequent procedure and how to deal with ret value.

lmi meta-command
lmi -h $HOST sw install sblim-sfcb

Package removal

Again both asynchronous and synchronous approaches are available.

Synchronous removal The aim is achieved by issuing an opposite operation than before. The instance of
LMI_InstalledSoftwareIdentity is deleted here.

c = connect("host", "user", "pass")
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(

{"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-3.fc19.x86_64"})
installed_assocs = identity.to_instance().reference_names(

Role="InstalledSoftware",
ResultClass="LMI_InstalledSoftwareIdentity")

if len(installed_assocs) > 0:
for assoc in installed_assocs:

assoc.to_instance().delete()
print("deleted %s" % assoc.InstalledSoftware.InstanceID)

3.2. OpenLMI server components 239

https://fedorahosted.org/openlmi/wiki/shell

OpenLMI Documentation, Release latest

else:
print("no package removed")

Asynchronous removal
c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(

{"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-5.fc19.x86_64"})
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
ret = service.InstallFromSoftwareIdentity(

Source=identity,
Target=cs,
InstallOptions=[9]) # [Uninstall]

Again please refer to Asynchronous installation for examples on how to deal with the ret value.

lmi meta-command
lmi -h $HOST sw remove sblim-sfcb

Package update

Only asynchronous method is provided for this purpose. But with the possibility of synchronous invocation.

lmishell Example below shows the synchronous invocation of asynchronous method.

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(

{"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-5.fc19.x86_64"})
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
ret = service.SyncInstallFromSoftwareIdentity(

Source=identity,
Target=cs,
InstallOptions=[5] # [Update]
to force update, when package is not installed
#InstallOptions=[4, 5] # [Install, Update]

)
print "installation " + ("successful" if rval == 0 else "failed")

lmi meta-command
lmi -h $HOST sw update sblim-sfcb

Package verification

Installed RPM packages can be verified. Attributes of installed files are compared with those stored in particular RPM
package. If some value of attribute does not match or the file does not exist, it fails the verification test. Following
attributes come into play in this process:

• File size - in case of regular file

• User ID

240 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• Group ID

• Last modification time

• Mode

• Device numbers - in case of device file

• Link Target - in case the file is a symbolic link

• Checksum - in case of regular file

lmishell It’s done via invocation of VerifyInstalledIdentity(). This is an asynchronous method. We can not use
synchronous invocation if we want to be able to list failed files.

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(

{"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-5.fc19.x86_64"})
results = service.VerifyInstalledIdentity(

Source=identity,
Target=ns.PG_ComputerSystem.first_instance_name())

nevra = (identity.ElementName if isinstance(identity, LMIInstance)
else identity.InstanceID[len(’LMI:LMI_SoftwareIdentity:’):])

if results.rval != 4096:
msg = ’failed to verify identity "%s (rval=%d)"’ % (nevra, results.rval)
if results.errorstr:

msg += ’: ’ + results.errorstr
raise Exception(msg)

job = results.rparams[’Job’].to_instance()

wait by polling or listening for indication
wait_for_job_finished(job)

if not LMIJob.lmi_is_job_completed(job):
msg = ’failed to verify package "%s"’ % nevra
if job.ErrorDescription:

msg += ’: ’ + job.ErrorDescription
raise Exception(msg)

get the failed files
failed = job.associators(

AssocClass="LMI_AffectedSoftwareJobElement",
Role=’AffectingElement’,
ResultRole=’AffectedElement’,
ResultClass=’LMI_SoftwareIdentityFileCheck’)

for iname in failed:
print iname.Name # print their paths

Polling, as a way of waiting for job completion, has been already shown in the example under Asynchronous installa-
tion.

See also:

LMI_SoftwareIdentityFileCheck

lmi meta-command

3.2. OpenLMI server components 241

OpenLMI Documentation, Release latest

lmi -h $HOST sw verify sblim-sfcb

Enable and disable repository

lmishell

c = connect("host", "user", "pass")
repo = c.root.cimv2.LMI_SoftwareIdentityResource.first_instance_name(

key="Name",
value="fedora-updates-testing")

disable repository
repo.to_instance().RequestStateChange(

RequestedState=c.root.cimv2.LMI_SoftwareIdentityResource. \
RequestedStateValues.Disabled)

repo = c.root.cimv2.LMI_SoftwareIdentityResource.first_instance_name(
key="Name",
value="fedora-updates")

enable repository
repo.to_instance().RequestStateChange(

RequestedState=c.root.cimv2.LMI_SoftwareIdentityResource. \
RequestedStateValues.Enabled)

lmi meta-command
lmi -h $HOST sw disable fedora-updates-testing
lmi -h $HOST sw enable fedora-updates

Supported event filters

There are various events related to asynchronous job you may be interested about. All of them can be subscribed to
with static filters presented below. Usage of custom query strings is not supported due to a complexity of its parsing.
These filters should be already registered in CIMOM if OpenLMI Software providers are installed. You may check
them by enumerating LMI_IndicationFilter class located in root/interop namespace. All of them apply
to two different software job classes you may want to subscribe to:

LMI_SoftwareInstallationJob Represents a job requesting to install, update or remove some package.

LMI_SoftwareVerificationJob Represents a job requesting verification of installed package.

Filters below are written for LMI_SoftwareInstallationJob only. If you deal with the other one, just replace the class
name right after the ISA operator and classname in filter’s name.

Percent Updated Indication is sent when the LMI_SoftwareJob.PercentComplete property of a job changes.

SELECT * FROM LMI_SoftwareInstModification WHERE
SourceInstance ISA LMI_SoftwareInstallationJob AND
SourceInstance.CIM_ConcreteJob::PercentComplete <>
PreviousInstance.CIM_ConcreteJob::PercentComplete

Registered under filter name "LMI:LMI_SoftwareInstallationJob:PercentUpdated".

Job state change Indication is sent when the LMI_SoftwareJob.JobState property of a job changes.

242 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

SELECT * FROM LMI_SoftwareInstModification WHERE
SourceInstance ISA LMI_SoftwareInstallationJob AND
SourceInstance.CIM_ConcreteJob::JobState <>
PreviousInstance.CIM_ConcreteJob::JobState

Registered under filter name "LMI:LMI_SoftwareInstallationJob:Changed".

Job Completed This event occurs when the state of job becomes COMPLETED/OK 21.

SELECT * FROM LMI_SoftwareInstModification WHERE
SourceInstance ISA LMI_SoftwareInstallationJob AND
SourceInstance.CIM_ConcreteJob::JobState = 17

Registered under filter name "LMI:LMI_SoftwareInstallationJob:Succeeded".

Error This event occurs when the state of job becomes COMPLETED/Error 22.

SELECT * FROM LMI_SoftwareInstModification WHERE
SourceInstance ISA LMI_SoftwareInstallationJob AND
SourceInstance.CIM_ConcreteJob::JobState = 10

Registered under filter name "LMI:LMI_SoftwareInstallationJob:Failed".

New Job This event occurs when the new instance of LMI_SoftwareJob is created.

SELECT * FROM LMI_SoftwareInstCreation WHERE
SourceInstance ISA LMI_SoftwareInstallationJob

Registered under filter name "LMI:LMI_SoftwareInstallationJob:Created".

3.2.13 SSSD Provider

OpenLMI SSSD is a CIM provider for managing the System Security Services Daemon.

It provides only the basic functionality: managing SSSD components and providing information about active domains.

Contents:

3.2.14 Storage Provider

Overview

OpenLMI-Storage is a CIM provider which manages storage on a Linux machine. It exposes remotely accessible
object-oriented API using WBEM set of protocols and technologies.

21 This is a composition of values in OperationalStatus array. It corresponds to value Completed of JobState property.
22 This is a composition of values in OperationalStatus array. It corresponds to value Exception of JobState property.

3.2. OpenLMI server components 243

http://www.openlmi.org/node/1785

OpenLMI Documentation, Release latest

Clients

The API can be accessed by any WBEM-capable client. OpenLMI already provides:

• Python module lmi.scripts.storage, part of OpenLMI scripts.

• Command line tool: LMI metacommand, with ‘storage’ subcommand.

Features

• Enumerate all block devices.

• Partition a block device.

• Manage MD RAID and LVM.

• Format a block device with a filesystem (xfs, ext2/3/4, ...)

• Manage mounts.

Currently, OpenLMI-Storage manages local block devices, i.e. block devices which are present in /dev/ directory.
This includes also attached iSCSI, FC and FCoE devices, as long as appropriate block device is present.

In future, it may include configuration of iSCSI and FC initiators, multipath and other remote-storage management.

Examples

There is plenty of examples how to use OpenLMI-Storage provider remotely from LMIShell:

• Create a partition table on a device.

• Create a new partition.

• Create software RAID5 with 3 devices.

• Format a device with ext3 filesystem.

• Mount a filesystem.

Documentation

The provider is inspired by SNIA SMI-S, but it differers in several important areas. Application developers who are
familiar with SMI-S should read SMI-S profiles chapter.

Application developers and/or sysadmins should skip whole SMI-S chapter and start at OpenLMI-Storage concept.

Table of contents

SMI-S profiles

This chapter lists SMI-S profiles implemented by OpenLMI-Storage. The implementation does not follow SMI-S
strictly and deviates from it where SMI-S model cannot be used. Each such deviation is appropriately marked.

OpenLMI-Storage implements following profiles:

244 Chapter 3. Table of Contents

http://pythonhosted.org/openlmi-tools/index.html#lmishell
http://www.snia.org/
http://www.snia.org/forums/smi

OpenLMI Documentation, Release latest

SMI-S Disk Partition Subprofile

Profile adjustment The Disk Partition Subprofile does not reflect real-world MBR partition tables:

• The profile specifies, there can be up to 4 primary partitions (correct), one of them can be extended (correct)
and up to 4 logical partitions can be instantiated on this extended partition (wrong, number of logical partitions
is not limited).

• The profile specifies that logical partition metadata is on the beginning of the extended partition (see Figure 7
in the profile). In reality, each logical partition has its own metadata sector just before the partition. In addition,
there can be number of empty sectors between the logical partition metadata and the partition beginning, which
are left as result of alignment rules.

As result of this deficiency, some adjustments were necessary:

• The LMI_DiskPartition representing a logical partition includes the metadata sector and any alignment sectors.

• NumberOfBlocks property includes the metadata and any alignment sectors.

• ConsumableBlocks includes only the real usable data on partition.

Figure 3.5: Correct overview of logical partitions.

GPT partition tables do not have these issues and are generally preferred over MBR ones.

Implementation All mandatory classes are implemented. However, CreateOrModifyPartition method is not imple-
mented. This function might be added in future.

The only way, how to create partitions is proprietary LMI_CreateOrModifyPartition, which fits actual partitioning
better.

Classes Implemented SMI-S classes:

• LMI_PartitionBasedOn

• LMI_DiskPartition

• LMI_DiskPartitionConfigurationCapabilities

• LMI_DiskPartitionConfigurationService

• LMI_DiskPartitionElementCapabilities

• LMI_GenericDiskPartition

• LMI_InstalledPartitionTable

3.2. OpenLMI server components 245

OpenLMI Documentation, Release latest

• LMI_StorageExtent

Additional implemented classes:

• LMI_DiskPartitionConfigurationSetting

• LMI_DiskPartitionElementSettingData

Not implemented classes:

• CIM_GPTDiskPartition

• CIM_LogicalDisk

• CIM_VTOCDiskPartition

• CIM_SystemDevice

• CIM_HostedService

Methods Implemented:

• SetPartitionStyle

• LMI_CreateOrModifyPartition

Not implemented:

• CreateOrModifyPartition

Warning: Mandatory indications are not implemented.
Anaconda does not provide such functionality and it would be very CPU-intensive to periodically scan
for new/deleted partitions.

SMI-S Block Services Package

This package is core of SMI-S. It describes how devices (disks) are grouped together into pools with different capa-
bilities and even hierarchy of pools can be built.

A StoragePool is a storage element; its storage capacity has a given set of capabilities. Those ‘StorageCa-
pabilities’ indicate the ‘Quality of Service’ requirements that can be applied to objects created from the
StoragePool.

Storage on Linux does not use pool concept except Volume Groups, therefore we allow to create storage devices
directly from other storage devices, e.g. create MD RAID from partitions.

Primordial pool At the lowest level of hierarchy of SMI-S storage pools are primordial devices and pools.

A primordial StoragePool is a type of StoragePool that contains unformatted, unprepared, or unassigned
capacity. Storage capacity is drawn from the primordial StoragePool to create concrete StoragePools. A
primordial StoragePool aggregates storage capacity not assigned to a concrete StoragePool. StorageVol-
umes and LogicalDisks are allocated from concrete StoragePools.

At least one primordial StoragePool shall always exists on the block storage system to represent the
unallocated storage on the storage device.

OpenLMI-Storage uses raw disk as primordial. Everything else (partitions, RAIDs, logical volumes, ...) are not
primordial.

246 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Logical disks In SMI-S, only LogicalDisks instances can be used by the OS. I.e. if an admin wants to build a
filesystem e.g. on RAIDCompositeExtent, in SMI-S it’s necessary to allocate a LogicalDisk from it.

We find this approach useless and we don’t allocate LogicalDisks for devices, which can be used by the OS. In fact,
any block device can be used by the OS, therefore it would make sense to make LMI_StorageExtent as subclass
of CIM_LogicalDisk.

Implementation

Classes Implemented SMI-S classes:

• LMI_VGAssociatedComponentExtent

• LMI_MDRAIDBasedOn

• LMI_LVBasedOn

• LMI_LVAllocatedFromStoragePool

• LMI_LVElementCapabilities

• LMI_VGElementCapabilities

• LMI_MDRAIDElementCapabilities

• LMI_MDRAIDElementSettingData

• LMI_LVElementSettingData

• LMI_VGElementSettingData

• LMI_StorageExtent

• LMI_LVStorageExtent

• LMI_MDRAIDStorageExtent

• LMI_StorageConfigurationService

• LMI_VGStoragePool

• LMI_VGStorageCapabilities

• LMI_LVStorageCapabilities

• LMI_MDRAIDStorageCapabilities

• LMI_VGStorageSetting

• LMI_MDRAIDStorageSetting

• LMI_LVStorageSetting

Methods Implemented:

• CreateOrModifyStoragePool (creates Volume Group from list of block devices).

• CreateOrModifyElementFromElements (creates MD RAID from list of block devices).

• CreateOrModifyElementFromStoragePool (creates logical Volumes from a Volume Group).

• CreateOrModifyMDRAID

• CreateOrModifyVG

• CreateOrModifyLV

3.2. OpenLMI server components 247

OpenLMI Documentation, Release latest

Warning: Mandatory indications are not implemented.

SMI-S Extent Composition Subprofile

This profile provides lot of examples how to create various RAID levels and how to composite hierarchy of Storage-
Pools in general. It does not introduce any new method or class.

SMI-S File Storage Profile

This profile is fully implemented. See the next chapter for its usage and mapping to LMI_ classes.

SMI-S Filesystem Profile

OpenLMI-Storage implements the Filesystem Profile with these adjustments:

• Local Access is not implemented, we use LMI_MountService to mount local filesystems:

– SMI-S expects that one filesystem can be mounted only once using Local Access, which is not true on
Linux, we might mount one filesystem multiple times.

– Mounting a filesystem is totally different operation to creating/modifying of a filesystem, these two func-
tions should be separated. Therefore we introduce LMI_MountService to mount various filesystems.

• Directory Services are not implemented.

Implementation All mandatory classes and methods are implemented.

Classes Implemented SMI-S classes:

• LMI_FileSystemSetting

• LMI_FileSystemElementSettingData

• LMI_HostedFileSystem

• LMI_LocalFileSystem

• CIM_LogicalFile using separate LogicalFile provider from OpenLMI-Providers package.

Not implemented classes:

• ‘CIM_FileStorage

• SNIA_LocalAccessAvailable

• SNIA_LocalFileSystem

• SNIA_LocallyAccessibleFileSystemSetting

• and all related references.

248 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Methods There are no methods in this profile.

Warning: Mandatory indications are not implemented.
Blivet does not provide such functionality and it would be very CPU-intensive to periodically scan for modified
filesystems.

SMI-S Filesystem Manipulation Profile

OpenLMI-Storage implements the Filesystem Profile with these adjustments:

• Local Access is not implemented, we use LMI_MountService to mount local filesystems:

– SMI-S expects that one filesystem can be mounted only once using Local Access, which is not true on
Linux, we might mount one filesystem multiple times.

– Mounting a filesystem is totally different operation to creating/modifying of a filesystem, these two func-
tions should be separated.

• Directory Services are not implemented.

Implementation SNIA-specific classes and methods (with SNIA_ prefix) are not implemented to avoid any copy-
right problems - SNIA MOF files have a license which does not allow us to implement it in open source project.

We implement our LMI_ counterparts, inspired by CIM_StorageService and CIM_StorageSetting. The major differ-
ence to CIM_ and SNIA_FileSystemConfigurationService is that all methods accepts a Setting argument
as reference and not as embedded instance to match the rest of the methods (mainly in Block Services profile).

Classes Implemented SMI-S classes:

• LMI_FileSystemConfigurationElementCapabilities

• LMI_FileSystemElementSettingData

• LMI_HostedFileSystem

• LMI_HostedStorageService

• LMI_FileSystemCapabilities

– not derived from SNIA_FileSystemCapabilities!

• LMI_FileSystemConfigurationCapabilities

– not derived from SNIA_FileSystemConfigurationCapabilities!

• LMI_FileSystemConfigurationService

– not derived from SNIA_FileSystemConfigurationService!

• LMI_FileSystemSetting

– not derived from SNIA_FileSystemSetting!

• LMI_LocalFileSystem

– not derived from SNIA_LocalFileSystem!

Not implemented classes:

• SNIA_FileSystemCapabilities

• SNIA_FileSystemConfigurationCapabilities

3.2. OpenLMI server components 249

OpenLMI Documentation, Release latest

• SNIA_FileSystemConfigurationService

• SNIA_FileSystemSetting

• SNIA_LocalFileSystem

• SNIA_LocalAccessAvailable

• SNIA_LocallyAccessibleFileSystemCapabilities

• SNIA_LocallyAccessibleFileSystemSetting

• and all related references.

Methods Implemented:

• LMI_CreateSetting

• LMI-CreateFileSystem

– Similar to plain CIM CreateFileSystem, with these modifications:

* Goal parameters is passed as reference and not as embedded instance, i.e. all LMI_FileSystemSetting
instances reside on server and are created using LMI_CreateSetting

* Multiple extents can be passed in InExtents parameter. The method then creates one filesystem on
multiple devices. Currently only btrfs supports this behavior, other filesystems can be created only on
one device.

• DeleteFileSystem

Not implemented:

• CreateGoalSettings

• GetRequiredStorageSize

• SNIA_CreateFileSystem

• SNIA_ModifyFileSystem

• CreateFileSystem

• ModifyFileSystem

Warning: Mandatory indications are not implemented.
Blivet does not provide such functionality and it would be very CPU-intensive to periodically scan for modified
filesystems.

SMI-S Job Control Subprofile

OpenLMI-Storage implements the Job Control Subprofile with these adjustments:

• All indications are implemented, however the CQL query is different. SMI-S uses optional CQL exten-
sions, e.g. ANY keyword, and our CIMOMs do not support that. Therefore all the CQL queries for
OperationalStatus[*] were reworked to use JobState property.

Implementation All mandatory classes and methods are implemented.

250 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Classes Implemented SMI-S classes:

• LMI_AffectedStorageJobElement

• LMI_AssociatedStorageJobMethodResult

• LMI_StorageJob

• StorageMethodResult

• LMI_OwningStorageJobElement

Methods

• GetErrors

• GetError

• RequestStateChange

Indications See list of indications in Jobs chapter.

SMI-S Block Server Performance Subprofile

This profile provides I/O statistics for various CIM_StorageExtent subclasses.

OpenLMI-Storage implements the Block Server Performance Subprofile with these adjustments:

• Applications cannot create custom manifests, i.e. LMI_BlockStatisticsService.AddOrModifyManifest is not im-
plemented.

• We provide LMI_BlockStorageStatisticalData for every CIM_StorageExtent subclass and not only for disk
drives. LMI_BlockStorageStatisticalData.ElementType property is always set to 9, i.e. Extent.

• There is no sampling interval. OpenLMI always reports current values when returning
LMI_BlockStorageStatisticalData instance.

Note: Even though properties in LMI_BlockStorageStatisticalData are 64-bit, they are tracked as 32-bit on systems
with 32-bit kernel. They can wrap pretty quickly on modern hardware.

For example, on i686 with iSCSI drive on 10Gb/s link, the KBytesRead counter can wrap in approximately 27 minutes.

With 64-bit kernels, these counters are tracked in 64-bits and they wrap once in a few years.

Implementation All mandatory classes and methods are implemented.

Classes Implemented SMI-S classes:

• LMI_BlockStorageStatisticalData

• LMI_StorageElementStatisticalData

• LMI_StorageStatisticsCollection

• LMI_MemberOfStorageStatisticsCollection

• LMI_HostedStorageStatisticsCollection

• LMI_BlockStatisticsService

3.2. OpenLMI server components 251

OpenLMI Documentation, Release latest

• LMI_BlockStatisticsCapabilities

• LMI_BlockStatisticsManifest

• LMI_BlockStatisticsManifestCollection

• LMI_MemberOfBlockStatisticsManifestCollection

• LMI_AssociatedBlockStatisticsManifestCollection

Methods Implemented methods:

• LMI_BlockStatisticsService.GetStatisticsCollection

The OpenLMI-Storage CIM API follows following principles:

• Each block device is represented by exactly one CIM_StorageExtent.

• For example RAID devices are created using LMI_StorageConfigurationService. CreateOrModi-
fyElementFromElements, without any pool being involved.

• No CIM_LogicalDisk is created for devices consumed by the OS, i.e. when there is a filesystem on
them.

• Actually, all block devices can be used by the OS and it might be useful to have LMI_StorageExtent
as subclass of CIM_LogicalDisk.

Warning: This violates SMI-S, each block device should have both a StorageExtent + LogicalDisk associated
from it to be usable by the OS.

• CIM_StoragePool is used only for real pool objects - volume groups.

• PrimordialPool is not present. It might be added in future to track unused disk drives and partitions.

The implementation is not complete, e.g. mandatory Server Profile is not implemented at all. The list will get updated.

Storage API concept

OpenLMI-Storage provides CIM API. Some CIM knowledge is required and this guide assumes that reader can rou-
tinely read and modify remote CIM objects and call their intrinsic and extrinsic methods.

No SMI-S knowledge is necessary, but it can help a lot.

CIM API concepts

Storage API is based on several design patterns, which are common in CIM and SMI-S.

Separation of state and configuration If foo is configurable, CIM uses two classes to describe it:

• CIM_Foo: state of foo.

• CIM_FooSetting: configuration of foo.

That means, each foo on managed system is represented by one CIM_Foo instance and one CIM_FooSetting
instance. They are connected together using CIM_FooElementSettingData association instance.

If there is no CIM_FooSetting instance for a CIM_Foo, it indicates that the foo is not configurable.

For example, a local filesystem is represented by:

252 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• one instance of CIM_LocalFileSystem, which contains state of the filesystem – nr. of inodes, nr. of free
inodes, total space on the filesystem, free space, etc.

• one instance of CIM_LocalFileSystemSetting, which contains configuration of the filesystem – inode
size, journal size, ...

Sometimes, state and configuration overlap. In our filesystem example, BlockSize is property of both
CIM_LocalFileSystem and CIM_LocalFileSystemSetting. Logically, the BlockSize should be
only in CIM_LocalFileSystemSetting. But if a filesystem was not configurable, there would be no
CIM_LocalFileSystemSetting for it and therefore any management application would not have access to
its BlockSize, which is important feature of the filesystem.

Configuration service In CIM world, managed elements cannot be configured directly by editing the associated
CIM_FooSetting with the configuration of foo. Instead, there is CIM_FooConfigurationService single-
ton, which has method to create, modify and sometimes also delete foos.

Change of configuration If an application want to change configuration of a foo, it must create new auxiliary
CIM_FooSetting instance with requested new configuration and associate this new CIM_FooSetting with the
CIM_Foo it wants to configure. The application does not need to completely fill the auxiliary CIM_FooSetting,
in most cases it is enough to edit only the properties that it wants to change, the rest of properties can be NULL.

For example, to change CIM_LocalFileSystemSetting of a CIM_LocalFileSystem, the applica-
tion must create new CIM_LocalFileSystemSetting, fill its properties it wants to change and then call
CIM_FileSystemConfigurationService.SNIA_ModifyFileSystem() method.

The auxiliary CIM_LocalFileSystemSetting created by the application can be reused by the application to
change configuration of different CIM_LocalFileSystem instances.

Creation of instances The CIM_FooSetting is also used to create new objects. If an application wants to create
new foo, it creates new auxiliary CIM_FooSetting, which describes configuration of the foo to create. The ap-
plication can then call specific API method to create the foo and new CIM_Foo is created, with its own associated
CIM_FooSetting. The associated CIM_FooSetting is basically a copy of the auxiliary CIM_FooSetting cre-
ated by the application. Therefore the application can reuse one auxiliary CIM_FooSetting instance to create or
modify multiple foos.

For example, to create a filesystem on a block device, the application must cre-
ate CIM_LocalFileSystemSetting, set its properties as it wants and call
CIM_FileSystemConfigurationService.SNIA_CreateFileSystem.

Capabilities The DMTF and SMI-S describe various methods and configuration properties of various classes.
Implementations of the standards can implement only some of these methods and properties. Therefore
CIM_FooConfigurationCapabilities describes what methods and kinds of foo our implementation of
CIM_FooConfigurationService supports.

For example, if our CIM_FileSystemConfigurationService supports xfs and ext3 filesystems and only
SNIA_CreateFileSystem and SNIA_ModifyFileSystem method calls, it will be reflected in its associated
CIM_FileSystemConfigurationCapabilities.

In addition, if there are several different kind of foos supported by the implementation, each such kind can have its
own CIM_FooCapabilities instance to describe all available configuration options and their value ranges.

For example, if our CIM_FileSystemConfigurationService is able to create xfs and ext3 filesystems, there
are two CIM_LocalFileSystemCapabilities instances, one for xfs and the second for ext3. The xfs-related

3.2. OpenLMI server components 253

OpenLMI Documentation, Release latest

instance describes valid inode sizes for xfs, while the ext3-related instance describes valid inode sizes for ext3.
Since we can subclass CIM_LocalFileSystemCapabilities, the xfs-related instance can have additional
xfs-specific properties and so can have also the ext3-related instance.

The supported properties and their ranges can be either defined directly in the CIM_FooCapabilities
(which is the most common case) or using CIM_FooSetting attached to CIM_FooCapabilities us-
ing CIM_SettingsDefineCapabilities association. The associated CIM_FooSetting can then de-
fine minimum, maximum or default values of the configuration properties. Consult DMTF description of
CIM_SettingsDefineCapabilities association in this case.

This is the case of filesystem configuration, the capabilities of xfs and ext3 filesystem is defined using
CIM_LocalFileSystemSetting.

Figure 3.6: Example CIM_FileSystemConfigurationService with capabilities and settings, which define
the capabilities.

There are slight variations on this concept across DMTF and SMI-S profiles as the standards evolved, sometimes
are CIM_FooConfigurationCapabilities and CIM_FooCapabilities merged into one class, some-
times the capabilities are associated directly to managed elements, sometimes the capabilities as defined using setting
instances etc. Still, the concept is the same - capabilities define what configuration options are supported by the im-
plementation and its valid values or value ranges. Different implementations will have different capabilities. Setting
instances then describe specific configuration of one managed element.

Predefined configurations To simplify management applications, the implementation can provide several
CIM_FooSetting instances for the most typical foo configurations. These instances are associated to
CIM_FooCapabilities. Application then does not need to manually create auxiliary CIM_FooSetting in-
stance and fill its properties, it can directly use the preconfigured ones.

For example, an implementation can provide one typical CIM_LocalFileSystemSetting instance for generic
xfs filesystem and one CIM_LocalFileSystemSetting instance for xfs filesystem tuned for Gluster, which
needs larger inode size for better performance.

Document conventions

Throughout this document we use following conventions.

Examples All example scripts are for lmishell. See it’s documentation on OpenLMI page.

We also assume that following script has been run to connecto to a CIMOM and initialize basic variables:

MEGABYTE = 1024*1024
connection = connect("localhost", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
partitioning_service = ns.LMI_DiskPartitionConfigurationService.first_instance()
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()
encryption_service = ns.LMI_ExtentEncryptionConfigurationService.first_instance()

Device hierarchy

The API manages all block devices in machine’s local /dev/ directory, i.e. also remote disks (iSCSI, FcoE, ...), as long
as there is appropriate device in local /dev/.

254 Chapter 3. Table of Contents

https://fedorahosted.org/openlmi/wiki/shell
https://fedorahosted.org/openlmi/

OpenLMI Documentation, Release latest

The API exposed by OpenLMI-Storage is object-oriented. Each block device present on the managed system is
represented as instance of CIM_StorageExtent class. The instance has properties like DeviceID, Name, BlockSize and
NumberOfBlocks, which describe the block device.

CIM_StorageExtent has several subclasses, such as LMI_DiskPartition (=MS DOS partition) or LMI_LVStorageExtent
(=Logical Volume), which add properites specific for the particular device type.

Each block device is represented by instance of CIM_StorageExtent or its subclasss.

LMI_StorageExtent represents all devices, which do not have any specific CIM_StorageExtent subclass.

Each volume group is represented by LMI_VGStoragePool.

Instances of LMI_VGStoragePool, CIM_StorageExtent and its subclasses compose an oriented graph of devices on the
system. Devices are connected with these associations or their subclasses:

• CIM_BasedOn and is subclasses associates a block device to all devices, on which it directly depends on, for
example a partition is associated to a disk, on which it resides, and MD RAID is associated to all underlying
devices, which compose the RAID.

• LMI_VGAssociatedComponentExtent associates volume groups with its physical extents.

• LMI_LVAllocatedFromStoragePool associates logical volumes to their volume groups.

Figure 3.7: Example of two logical volumes allocated from volume group created on top of MD RAID with three
devices.

All other storage objects, like partition tables, filesystems and mounts are designed in similar way - all these are
instances of particular classes.

These storage elements are managed (i.e. created / modified and deleted) by subclasses of CIM_Service such as
LMI_FileSystemConfigurationService. These services are not system services in systemd or UNIX SysV sense, it is
just API collecting bunch of methods related to a particular topic, e.g. filesystem management in our example.

These services are described in OpenLMI-Storage API chapter.

Device identification

On modern Linux, block devices can be identified in number of ways. Some of them are stable across reboots, some
other are nice to remeber and it is also possible to configure block device names using udev rules.

For example, all these paths refer to the same block device:

• /dev/disk/by-id/ata-Samsung_SSD_840_Series_S19MNSAD500335K

• /dev/disk/by-id/wwn-0x50025385a0031e7c

• /dev/sda

• /dev/systemdisk (using an udev rule)

OpenLMI does not assume any site policy, it’s up to system administrator to write udev rules if default /dev/sdX and
/dev/disk/by-id/XYZ is not sufficient.

As many things in Linux are configurable and tunable, term SHOULD below means unless explicitly reconfigured.

3.2. OpenLMI server components 255

OpenLMI Documentation, Release latest

CIM_StorageExtent When OpenLMI builds CIM_StorageExtent for a block device, it fills following properties:

DeviceID

OpenLMI internal identifier of a block device. Even if it looks like a device path, it should be opaque for
applications and applications should not parse it / interpret it in any way. Its format may change in future
versions of OpenLMI.

This is the primary key how to identify a CIM_StorageExtent.

• Guaranteed to be unique in the managed system.

• SHOULD be persistent across reboots.

InstanceID

OpenLMI internal identifier of a block device group. This property has been added to have the same way
how to identify CIM_StorageExtent and LMI_VGStoragePool.

• Guaranteed to be unique in the managed system.

• SHOULD be persistent across reboots.

Name

Canonical path to the device, such as as /dev/sda, /dev/mapper/test-test1,
/dev/md/blivet00. This is the Linux default device name.

• Guaranteed to be unique in the managed system.

• Not persistent across reboots.

ElementName

Name of the block device, logical volume, RAID etc, such as as sda for disk, test1 for logical volume,
blivet00 for MD RAID.

• Not unique in the managed system.

• Not persistent across reboots.

• Usually assigned by system administrator when the device is created (logical volume, MD RAID,
...)

Names

Array of all paths, under which this device is known in the system. All these paths are links to one block
device. For disk from the example above, it’s content would be:

[
’/dev/disk/by-id/ata-Samsung_SSD_840_Series_S19MNSAD500335K’,
’/dev/disk/by-id/wwn-0x50025385a0031e7c’,
’/dev/sda’,
’/dev/systemdisk;

]

Applications can use any of these properties to find a block device (using CQL or WQL).

Note: OpenLMI tries as hard as possible to have DeviceID and InstanceID properties really stable across reboots.
Unfortunately, some hardware does not provide unique identifier for disks - typically in virtualized environment, there
may be cases where DeviceID may be just /dev/vda and it may change when the virtual machine reorders the virtual
disks after reconfiguration.

256 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

LMI_VGStoragePool Although volume groups are not exactly block devices, there are several ways how to identify
LMI_VGStoragePool instances:

InstanceID

OpenLMI internal identifier of a volume group. It should be opaque for applications, i.e. applications
should not parse it / interpret it in any way.

• Guaranteed to be unique in the managed system.

• SHOULD be persistent across reboots.

PoolID, ElementName

Name of the volume group.

• Guaranteed to be unique among all volume groups on the managed system. However, there can be
other ManagedElements, such as logical volumes, with the same ElementName.

• SHOULD be persistent across reboots.

Name

Canonical path to the volume group, such as as /dev/mapper/mygroup. This property has been
added to have the same way how to identify CIM_StorageExtent and LMI_VGStoragePool.

• Guaranteed to be unique in the managed system.

• Not persistent across reboots.

Overwrite policy

Before OpenLMI-Storage overwrites or deletes a device, it first checks if the device is unused.

Unused device:

• Is not mounted.

• Is not part of running device, e.g. MD RAID, Volume Group or LUKS.

If a device is used, any operation which would overwrite or delete it returns CIM_Error with error message “Device
XYZ is mounted” or “Device XYZ is used by ABC”. It is up to the application to first unmount the device, close the
LUKS/dm-crypt device, stop the RAID or remove it from running Volume Group etc.

Asynchronous jobs

Most of storage manipulation methods, for example CreateOrModifyVG, can be time-consuming. Therefore the meth-
ods only check input parameters and return immediately with a reference to LMI_StorageJob instance. The operation
itself is performed asynchronously on the server in a separate thread.

The returned LMI_StorageJob instance can be then used to either pull the operation status or applications can subscribe
for job events and get an indication when status of a job changes.

Currently, only one job is being executed at a time, all others are enqueued and executed later.

Job status The job status is exposed in OperationalStatus and JobState properties. Their combination compose
unique job status:

3.2. OpenLMI server components 257

OpenLMI Documentation, Release latest

Job is OperationalStatus JobState
Queued Dormant New
Suspended OK Suspended
Running OK Running
Finished OK Completed, OK Completed
Failed Completed, Error Exception
Cancelled Stopped Terminated

Job.RequestStateChange method can be used to suspend, resume and cancel a job, while following rules apply:

• Only Queued job can be suspended.

• Only Suspended job can be resumed.

• Only Queued or Suspended job can be cancelled.

Note: Running job cannot be terminated in any way.

Figure 3.8: Job state machine.

By default, all job instances disappear automatically after 60 seconds after they reach any final state. This can be
overridden by setting TimeBeforeRemoval and DeleteOnCompletion properties of a job.

Return value and output parameters Return value and output parameters of an asynchronous method call are
stored in LMI_StorageJob.JobOutParameters property, which is EmbeddedObject of a class, which has property
for each output parameter of the asynchronous method. The method return value itself is available there too, as
__ReturnValue property.

For compatibility with SMI-S, the output parameters are also included in
LMI_StorageMethodResult.PostCallIndication property, which is associated to the job. The property itself is
embedded instance of CIM_InstMethodCall class. Return value is stored in its ReturnValue property. Output
parameters are stored in its MethodParameters property.

LMI_AffectedStorageJobElement association can be also used to find created/modified element of a LMI_StorageJob
instance.

Figure 3.9: Instance diagram of a job before finishing.

Figure 3.10: Instance diagram of a job after finishing.

Supported event filters

• PercentComplete property of a job changed:

SELECT * FROM LMI_StorageInstModification
WHERE SourceInstance ISA LMI_StorageJob

AND SourceInstance.CIM_ConcreteJob::PercentComplete
<> PreviousInstance.CIM_ConcreteJob::PercentComplete

• State of a job changed:

SELECT FROM LMI_StorageInstModification
WHERE SourceInstance ISA CIM_ConcreteJob

AND SourceInstance.CIM_ConcreteJob::JobState <> PreviousInstance.CIM_ConcreteJob::JobState

258 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

• A job reaches state “Completed/OK”:

SELECT * FROM LMI_StorageInstModification
WHERE SourceInstance ISA LMI_StorageJob

AND SourceInstance.CIM_ConcreteJob::JobState = 7

• A job reaches state “Completed/Error”:

SELECT * FROM LMI_StorageInstModification
WHERE SourceInstance ISA LMI_StorageJob

AND SourceInstance.CIM_ConcreteJob::JobState = 10

• New job was created:

SELECT * FROM LMI_StorageInstCreation WHERE SourceInstance ISA LMI_StorageJob

Note: All other indication filter queries will be rejected.

Usage

Block devices cannot be directly manipulated using intrinsic or extrinsic methods of CIM_StorageExtent or
LMI_VGStoragePool.

Please use appropriate ConfigurationService to create, modify or delete devices or volume groups.

Partitioning

Disks or any other block devices with partition tables have their LMI_StorageExtent or its subclass associated to
LMI_DiskPartitionConfigurationCapabilities using LMI_InstalledPartitionTable.

A GPT partition present on a block device are represented as LMI_GenericDiskPartition.

A MS-DOS partition present on a block device are represented as LMI_DiskPartition.

Both MS-DOS and GPT partitions are associated to the parent device using LMI_PartitionBasedOn. This BasedOn
association contains also start and end sectors of the partitions. Note that logical partitions are associated with the
extended partition where they are located, see the diagram below. Following instance diagram shows /dev/sda
disk with MS-DOS partition table and:

• 3 primary partitions

• 1 extended partition

– 2 logical partitions

Especially note that the extended partition /dev/sda4 contains an extended partition table and all logical parti-
tions are based on this extended partition. This is for compatibility with SMI-S and also it better illustrates physical
composition of the partitions on the disk.

However, to create a partition on the device, applications can use both /dev/sda or /dev/sda4 as value of
Extent parameter in LMI_CreateOrModifyPartition, call.

Useful methods

LMI_CreateOrModifyPartition Creates a partition of given size on a device with GPT or MS-DOS partition table.
It can automatically create extended and logical partitions when there is no space in the partition table for a
primary partition.

3.2. OpenLMI server components 259

OpenLMI Documentation, Release latest

CreateOrModifyPartition Creates a partition on a device with GPT or MS-DOS partition table. This method is
provided for compatibility with SMI-S. Instead of providing requested size of the new partition, exact location
of partition must be specified, which may result in suboptimal performance of the partition.

SetPartitionStyle Creates partition table on a device of requested size. If the size is not specified, the largest possible
partition is created.

FindPartitionLocation Finds start and end sector where a partition would be created and returns size of the partition.

LMI_DeletePartition Destroys a partition.

Use cases

List supported partition table types Currently GPT and MS-DOS partition tables are supported. More types can
be added later. Enumerate instances of LMI_DiskPartitionConfigurationCapabilities class to get list of all of them,
together with their basic properties like partition table size and maximum number of partitions:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

part_styles = ns.LMI_DiskPartitionConfigurationCapabilities.instances()
for style in part_styles:

print style.Caption
print "Partition table size:", style.PartitionTableSize, "block(s)"

Create partition table Use SetPartitionStyle method.

Sample code to create GPT partition table on /dev/sda:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
partitioning_service = ns.LMI_DiskPartitionConfigurationService.first_instance()

Find the disk
sda = ns.LMI_StorageExtent.first_instance({"Name": "/dev/sda"})

Find the partition table style we want to create there
gpt_caps = ns.LMI_DiskPartitionConfigurationCapabilities.first_instance(

{"InstanceID": "LMI:LMI_DiskPartitionConfigurationCapabilities:GPT"})

Create the partition table
partitioning_service.SetPartitionStyle(

Extent=sda,
PartitionStyle=gpt_caps)

MS-DOS partition tables are created with the same code, just using different
LMI_DiskPartitionConfigurationCapabilities instance.

Create partition Use LMI_CreateOrModifyPartition method.

Following code creates several partitions on /dev/sda. The code is the same for GPT and MS-DOS partitions:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

260 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

partitioning_service = ns.LMI_DiskPartitionConfigurationService.first_instance()
MEGABYTE = 1024*1024

Define helper function
def print_partition(partition_name):

partition = partition_name.to_instance()
print "Created partition", partition.DeviceID, \

"with", partition.NumberOfBlocks * partition.BlockSize, "bytes."

Find the disk
sda = ns.LMI_StorageExtent.first_instance({"Name": "/dev/sda"})

create 4 partitions with 100 MB each
for i in range(4):

(ret, outparams, err) = partitioning_service.SyncLMI_CreateOrModifyPartition(
Extent=sda,
Size = 100 * MEGABYTE)

print_partition(outparams[’Partition’])

Create partition with the whole remaining space - just omit ’Size’ parameter
(ret, outparams, err) = partitioning_service.SyncLMI_CreateOrModifyPartition(

Extent=sda)

print_partition(outparams[’Partition’])

On an empty disk with GPT partition table this code creates:

• 4 partitions with 100 MB each.

• One partition with the largest continuous unpartitioned space on the disk.

On an empty disk with MS-DOS partition table, the code creates:

• 3 primary partitions, 100 MB each.

• One extended partition with the largest continuous unpartitioned space.

• One 100 MB logical partitions.

• One logical partition with the largest continuous free space on the extended partition.

The resulting partitions can be seen in the diagram above.

List all partitions on a disk Enumerate LMI_PartitionBasedOn associations of the disk.

Following code lists all partitions on /dev/sda, together with their location:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the disk
sda = ns.LMI_StorageExtent.first_instance({"Name": "/dev/sda"})

based_ons = sda.references(ResultClass="LMI_PartitionBasedOn")
for based_on in based_ons:

print "Found partition", based_on.Dependent.DeviceID, \
"at sectors", based_on.StartingAddress, based_on.EndingAddress

TODO: check extended partition

3.2. OpenLMI server components 261

OpenLMI Documentation, Release latest

Find the largest continuous unpartitioned space on a disk Using side-effect of FindPartitionLocation, we can
find size of the largest partition that can be created on /dev/sda:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the disk
sda = ns.LMI_StorageExtent.first_instance({"Name": "/dev/sda"})
Find LMI_DiskPartitionConfigurationCapabilities associated to the disk
sda_partition_capabilities = sda.associators(

AssocClass=’LMI_InstalledPartitionTable’) [0]

Call its FindPartitionLocation without ’Size’ parameter
- the largest available space is returned.
(ret, outparams, err) = sda_partition_capabilities.FindPartitionLocation(

Extent=sda)

print "Largest space for a partition:", outparams[’size’]

Delete partition Call LMI_DeletePartition:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
partitioning_service = ns.LMI_DiskPartitionConfigurationService.first_instance()

sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
(ret, outparams, err) = partitioning_service.LMI_DeletePartition(

Partition=sda1)

Future direction In future, we might implement:

• LMI_CreateOrModifyPartition would also modify existing partitions, for example resize them.

MD RAID

MD RAID devices are represented by LMI_MDRAIDStorageExtent class.

Configuration of a MD RAID device is represented by instance of LMI_MDRAIDStorageSetting associated to it.
Currently this instance is there only for compatibility with SMI-S, but in future it may be extended to allow detailed
configuration of the RAID.

Members of the MD RAID are associated to the LMI_MDRAIDStorageExtent instance by LMI_MDRAIDBasedOn
association. Following instance diagram shows RAID5 /dev/md/myRAID with three devices:

Note the Level property in LMI_MDRAIDStorageExtent, which was added to simplify RAID level calculation, in SMI-
S the data redundancy and striping is determined by DataRedundancy, ExtentStripeLength and PackageRedundancy
properties.

Currently the MD RAID support is limited to creation and removal of RAIDs. It is not possible to modify existing
RAID, e.g. add or remove devices to/from it and/or manage RAID spares.

262 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Useful methods

CreateOrModifyMDRAID Creates a MD RAID of given level with given devices. Optionally, RAID name can be
specified and in future also more detailed RAID configuration.

CreateOrModifyElementFromElements Creates a MD RAID in SMI-S way. It is necessary to provide correct Goal
setting, which can be calculated e.g. by CreateMDRAIDStorageSetting

CreateMDRAIDStorageSetting This is helper method to calculate LMI_StorageSetting for given list of devices and
given RAID level for CreateOrModifyElementFromElements.

DeleteMDRAID Destroys a MD RAID. There is no SMI-S function for this.

Use cases

Create MD RAID Use CreateOrModifyMDRAID method. Following example creates MD RAID level 5 named
‘/dev/md/myRAID’ with three members:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the devices we want to add to MD RAID
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Create the RAID
(ret, outparams, err) = storage_service.SyncCreateOrModifyMDRAID(

ElementName = "myRAID",
InExtents= [sda1, sdb1, sdc1],
Level=storage_service.CreateOrModifyMDRAID.LevelValues.RAID5)

raid = outparams[’TheElement’].to_instance()
print "RAID", raid.DeviceID, \

"level", raid.Level, \
"of size", raid.BlockSize * raid.NumberOfBlocks, \
"created"

The result is the same as shown in diagram above.

Create MD RAID in SMI-S way SMI-S applications can use CreateOrModifyElementFromElements method. Fol-
lowing example creates MD RAID level 5 named ‘/dev/md/myRAID’ with three members:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the devices we want to add to MD RAID
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

3.2. OpenLMI server components 263

OpenLMI Documentation, Release latest

Calculate LMI_StorageSetting, e.g. using our helper method
(SMI-S application can of course use standard caps.CreateSetting()
and edit it manually)
caps = ns.LMI_MDRAIDStorageCapabilities.first_instance()
(ret, outparams, err) = caps.CreateMDRAIDStorageSetting(

InExtents=[sda1, sdb1, sdc1],
Level=caps.CreateMDRAIDStorageSetting.LevelValues.RAID5)

setting = outparams [’Setting’].to_instance()

Create the RAID
(ret, outparams, err) = storage_service.SyncCreateOrModifyElementFromElements(

InElements=[sda1, sdb1, sdc1],
Goal=setting,
ElementType = storage_service.CreateOrModifyElementFromElements.ElementTypeValues.StorageExtent)

raid = outparams[’TheElement’].to_instance()
print "RAID", raid.DeviceID, \

"level", raid.Level, \
"of size", raid.BlockSize * raid.NumberOfBlocks, \
"created"

List members of MD RAID Enumerate LMI_MDRAIDBasedOn associations of the MD RAID extent.

Following code lists all members od /dev/md/myRAID:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the disk
md = ns.LMI_StorageExtent.first_instance({"Name": "/dev/md/myRAID"})

devices = md.associators(AssocClass="LMI_MDRAIDBasedOn")
for dev in devices:

print "Found device", dev.DeviceID

Delete MD RAID Call DeleteMDRAID method:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

md = ns.LMI_MDRAIDStorageExtent.first_instance({"Name": "/dev/md/myRAID"})
(ret, outparams, err) = storage_service.SyncDeleteMDRAID(TheElement=md)

Future direction In future, we might implement:

• Modification of existing MD RAIDs, for example adding/removing devices.

• Management of spare devices.

• Detailed information of device status, synchronization progress etc.

• Indications of various events, like RAID failed member, synchronization errors etc.

264 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Logical Volume management

Volume Groups (VG) and Thin Pools (TP) are represented by LMI_VGStoragePool class. To differentiate between the
two, SpaceLimitDetermination and SpaceLimit are both set or both empty.

If both are set, an instance of the class is a thin pool. SpaceLimitDetermination is always set to 4 (limitless thin
pool, meaning that it can be overcommited) and SpaceLimit is set to the capacity of the storage allocated to the pool.
Also, RemainingManagedSpace will be set to the remaining space on the pool. Due to the current limitation of the
underlying storage library, if the pool is overcommited, its RemainingManagedSpace value is set to 0.

If both SpaceLimitDetermination and SpaceLimit are empty, the instance of the LMI_VGStoragePool class is a regular
volume group.

Every LMI_VGStoragePool instance has associated one instance of LMI_VGStorageSetting representing its configura-
tion (e.g. volume group extent size) and one instance of LMI_LVStorageCapabilities, representing its ability to create
logical volumes (for SMI-S applications). Every LMI_VGStoragePool instance, if it is a thin pool, is associated with
its thin logical volumes (if they exist) using LMI_VGAllocatedFromStoragePool.

Physical Volumes (PV) are associated to VGs using LMI_VGAssociatedComponentExtent association.

Logical Volumes (LV) and Thin Logical Volumes (TLV) are represented by LMI_LVStorageExtent class. If an instance
of the class is a thin logical volume, ThinlyProvisioned is set to True.

Each LMI_LVStorageExtent instance is associated to its respective VG/TP using LMI_LVAllocatedFromStoragePool
association.

In addition, LVs are associated to all PVs using LMI_LVBasedOn association. Following instance diagram shows one
Volume Group /dev/myGroup based on three Physical Volumes /dev/sda1, /dev/sdb1 and /dev/sdc1 and
two Logical Volumes myVol1 and myVol2.

Note that the diagram is simplified and does not show LMI_LVBasedOn association, which associates every myVolY
to /dev/sdX1.

The next instance diagram displays the Volume Group /dev/myGroup (see previous diagram) that has
myThinPool, sized 100 MiB, associated to it. This Thin Pool is used to provision the 10 GiB
Thin Logical Volume /dev/mapper/myGroup-myThinVolume. The VG/TP pair is connected with an
LMI_VGAllocatedFromStoragePool association. LMI_LVAllocatedFromStoragePool association joins the TP/TLV
pair.

Currently the LVM support is limited to creation and removal of VGs and LVs and to adding/removing devices to/from
a VG. It is not possible to modify existing LV, e.g. or resize LVs. In future OpenLMI may be extended to have more
configuration options in LMI_VGStorageSetting and LMI_LVStorageSetting.

Useful methods

CreateOrModifyVG Creates a Volume Group with given devices. The devices are automatically formatted with Phys-
ical Volume metadata. Optionally, the Volume Group extent size can be specified by using Goal parameter of
the method.

This method can be also used to add/remove PVs to/from VG.

CreateOrModifyThinPool Creates or modifies a Thin Pool.

CreateOrModifyThinLV Create or modifies a Thin Logical Volume.

CreateOrModifyStoragePool Creates a Volume Group in SMI-S way.

3.2. OpenLMI server components 265

OpenLMI Documentation, Release latest

CreateVGStorageSetting This is helper method to calculate LMI_VGStorageSetting for given list of devices for Cre-
ateOrModifyStoragePool method.

CreateOrModifyLV Creates a Logical Volume from given VG.

CreateOrModifyElementFromStoragePool Creates a Logical Volume in SMI-S way.

DeleteLV Destroys a Logical Volume or a Thin Logical Volume.

ReturnToStoragePool Destroys a Logical Volume in SMI-S way.

DeleteVG Destroys a Volume Group or a Thin Pool.

DeleteStoragePool Destroys a Volume Group in SMI-S way.

Use cases

Create Volume Group Use CreateOrModifyVG method. Following example creates a VG ‘/dev/myGroup’ with
three members and with default extent size (4MiB):

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the devices we want to add to VG
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Create the VG
(ret, outparams, err) = storage_service.SyncCreateOrModifyVG(

ElementName="myGroup",
InExtents=[sda1, sdb1, sdc1])

vg = outparams[’Pool’].to_instance()
print "VG", vg.PoolID, \

"with extent size", vg.ExtentSize, \
"and", vg.RemainingExtents, "free extents created."

The resulting VG is the same as shown in diagram above, except it does not have any LVs yet.

Create Thin Pool The VG from the previous example can be used to create a TP on. This example script creates a
Thin Pool ‘myThinPool’ on the VG ‘myGroup’. The TP is 100 MiB in size:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
MEGABYTE = 1024*1024

Find the volume group
vg = ns.LMI_VGStoragePool.first_instance({"InstanceID":"LMI:VG:myGroup"})

Allocate a thin pool out of it
(ret, outparams, err) = storage_service.SyncCreateOrModifyThinPool(

ElementName="myThinPool",

266 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

InPool=vg.path,
100 MiB
Size=100 * MEGABYTE)

tp = outparams["Pool"].to_instance()
print "TP %s with %d MiB remaining" % \

(tp.Name, tp.RemainingManagedSpace / MEGABYTE)

Create Volume Group in SMI-S way SMI-S applications can use CreateOrModifyStoragePool method. Following
example creates a VG ‘/dev/myGroup’ with three members and with default extent size (4MiB):

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the devices we want to add to VG
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Create the VG
(ret, outparams, err) = storage_service.SyncCreateOrModifyStoragePool(

InExtents=[sda1, sdb1, sdc1],
ElementName="myGroup")

vg = outparams[’Pool’].to_instance()
print "VG", vg.PoolID, \

"with extent size", vg.ExtentSize, \
"and", vg.RemainingExtents, "free extents created."

The resulting VG is the same as shown in diagram above, except it does not have any LVs yet.

Add and remove devices to/from a Volume Group CreateOrModifyStoragePool can be used to modify exising
VG. Its ‘InExtents’ parameter specifies new list of Physical Volumes of the VG. When an PV is being removed from
a VG, all its data are safely moved to a free PV.

Continuing with previous example, let’s remove ‘/dev/sda1’ from the VG and add ‘/dev/sdd1’ to it:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find all the devices we want to be in VG
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})
sdd1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdd1"})

new_pvs = [sdb1, sdc1, sdd1] # Without sda1!

Find the VG
vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})

Set the list of PVs of the VG.

3.2. OpenLMI server components 267

OpenLMI Documentation, Release latest

All existing PVs, which are not listed in InExtents parameter will
be removed from the VG. All new devices listed in InExtents parameter
are added to the VG. All data in the VG are moved from the PVs being
removed to a free PV, no data is lost.

(ret, outparams, err) = storage_service.SyncCreateOrModifyVG(
InExtents=new_pvs,
pool=vg.path)

Create Volume Group with specific extent size Use CreateVGStorageSetting to create LMI_VGStorageSetting,
modify its ExtentSize property with desired extent size and finally call CreateOrModifyVG with the setting as Goal
parameter. Following example creates a VG ‘/dev/myGroup’ with three members and with 1MiB extent size (4MiB):

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
MEGABYTE = 1024*1024

Find the devices we want to add to VG
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Create the LMI_VGStorageSetting
vg_caps = ns.LMI_VGStorageCapabilities.first_instance()
(ret, outparams, err) = vg_caps.CreateVGStorageSetting(

InExtents = [sda1, sdb1, sdc1])
setting = outparams[’Setting’].to_instance()
Modify the LMI_VGStorageSetting
setting.ExtentSize = MEGABYTE
settinh.push()

Create the VG
(either of CreateOrModifyStoragePool or CreateOrModifyVG
can be used with the same result)
(ret, outparams, err) = storage_service.SyncCreateOrModifyStoragePool(

InExtents=[sda1, sdb1, sdc1],
ElementName="myGroup",
Goal=setting)

vg = outparams[’Pool’].to_instance()
print "VG", vg.PoolID, \

"with extent size", vg.ExtentSize, \
"and", vg.RemainingExtents, "free extents created."

List Physical Volumes of a Volume Group Enumerate VGAssociatedComponentExtent associations of the VG.

Following code lists all PVs of /dev/myGroup:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the VG

268 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})
pvs = vg.associators(AssocClass="LMI_VGAssociatedComponentExtent")
for pv in pvs:

print "Found PV", pv.DeviceID

Create Logical Volume Use CreateOrModifyLV method. Following example creates two 100MiB volumes:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
MEGABYTE = 1024*1024

Find the VG
vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})

Create the LV
(ret, outparams, err) = storage_service.SyncCreateOrModifyLV(

ElementName="Vol1",
InPool=vg,
Size=100 * MEGABYTE)

lv = outparams[’TheElement’].to_instance()
print "LV", lv.DeviceID, \

"with", lv.BlockSize * lv.NumberOfBlocks,\
"bytes created."

Create the second LV
(ret, outparams, err) = storage_service.SyncCreateOrModifyLV(

ElementName="Vol2",
InPool=vg,
Size=100 * MEGABYTE)

lv = outparams[’TheElement’].to_instance()
print "LV", lv.DeviceID, \

"with", lv.BlockSize * lv.NumberOfBlocks, \
"bytes created."

The resulting LVs are the same as shown in diagram above.

Create Thin Logical Volume The following example assumes that a TP was already created (see Create Thin Pool).

There already is a TP (100 MiB) in the system. This snippet of code creates a 10 GiB Thin Logical Volume and prints
some information about it. Note that this TLV causes the underlying TP to be overcommited:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the thin pool
tp = ns.LMI_VGStoragePool.first_instance({"ElementName":"myThinPool"})

(ret, outparams, err) = storage_service.SyncCreateOrModifyThinLV(
ElementName="myThinLV",
ThinPool=tp.path,
10 GiB
Size=10 * GIGABYTE)

tlv = outparams["TheElement"].to_instance()

3.2. OpenLMI server components 269

OpenLMI Documentation, Release latest

print "TLV %s of size %d GiB" % \
(tlv.Name, tlv.BlockSize * tlv.NumberOfBlocks / GIGABYTE)

Create Logical Volume in SMI-S way Use CreateOrModifyElementFromStoragePool method. The code is the
same as in previous sample, just different method is used:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
MEGABYTE = 1024*1024

Find the VG
vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})

Create the LV
(ret, outparams, err) = storage_service.SyncCreateOrModifyElementFromStoragePool(

ElementName="Vol1",
InPool=vg,
Size=100 * MEGABYTE)

lv = outparams[’TheElement’].to_instance()
print "LV", lv.DeviceID, \

"with", lv.BlockSize * lv.NumberOfBlocks,\
"bytes created."

Create the second LV
(ret, outparams, err) = storage_service.SyncCreateOrModifyElementFromStoragePool(

ElementName="Vol2",
InPool=vg,
Size=100 * MEGABYTE)

lv = outparams[’TheElement’].to_instance()
print "LV", lv.DeviceID, \

"with", lv.BlockSize * lv.NumberOfBlocks, \
"bytes created."

Delete VG Call DeleteVG method:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})
(ret, outparams, err) = storage_service.SyncDeleteVG(

Pool = vg)

Delete LV Call DeleteLV method:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

lv = ns.LMI_LVStorageExtent.first_instance({"Name": "/dev/mapper/myGroup-Vol2"})

270 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

(ret, outparams, err) = storage_service.SyncDeleteLV(
TheElement=lv)

Future direction In future, we might implement:

• Modification of existing VGs and LVs, for example renaming VGs and LVs and resizing LVs.

• LVs with stripping and mirroring.

• Clustered VGs and LVs.

• Snapshots.

• Indications of various events.

File system management

Local file systems, both supported and unsupported, are represented by LMI_LocalFileSystem class and its subclasses.

Each LMI_LocalFileSystem instance of supported filesystems have associated one instance of LMI_FileSystemSetting
representing its configuration (e.g. inode size).

Supported filesystems are: ext2, ext3, ext4, xfs, btrfs. Only supported filesystems can be created! Actual set
of supported filesystems can be obtained from LMI_FileSystemConfigurationCapabilities instance associated to
LMI_FileSystemConfigurationService. Following instance diagram shows four block devices:

• /dev/sda1 and /dev/sda2 with btrfs filesystem spanning both these devices.

• /dev/sda3 with ext3 filesystem.

• /dev/sda4 with msdos filesystems. The msdos filesystem is unsupported, therefore it has no
LMI_FileSystemSetting associated.

Note: Currently the filesystem support is limited:

• Filesystems can be only created and deleted, it is not possible to modify existing filesystem.

• There is no way to set specific filesystem options when creating one. Simple mkfs.<filesystem type>
is called, without any additional parameters.

• btrfs filesystem can be only created or destroyed. There is currently no support for btrfs subvolumes, RAIDs,
and dynamic addition or removal of block devices.

• The LMI_LocalFileSystem instances do not report free and used space on the filesystems.

These limitations will be addressed in future releases.

Useful methods

LMI_CreateFileSystem Formats a StorageExtent with filesystem of given type. Currently the Goal parameter is not
used, i.e. no filesystem options can be specified.

DeleteFileSystem Destroys a file system (LMI_LocalFileSystem) or other metadata, such as Physical Volume metadata
or MD RAID metadata present (LMI_DataFormat) on a device.

Only unmounted filesystems and unused metadata can be deleted.

Use cases

3.2. OpenLMI server components 271

OpenLMI Documentation, Release latest

Create File System Use LMI_CreateFileSystem method. Following example formats /dev/sda3 with ext3:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()

Find the /dev/sda3 device
sda3 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda3"})

Format it
(ret, outparams, err) = filesystem_service.SyncLMI_CreateFileSystem(

FileSystemType=filesystem_service.LMI_CreateFileSystem.FileSystemTypeValues.EXT3,
InExtents=[sda3])

The resulting filesystem is the same as shown in diagram above.

Create btrfs File System with two devices Use the same LMI_CreateFileSystem method as above. Following
example formats /dev/sda1 and dev/sda2 as one btrfs volume:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()

Find the /dev/sda1+2 devices
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sda2 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda2"})

Format them
(ret, outparams, err) = filesystem_service.SyncLMI_CreateFileSystem(

FileSystemType=filesystem_service.LMI_CreateFileSystem.FileSystemTypeValues.BTRFS,
InExtents=[sda1, sda2])

The resulting filesystem is the same as shown in diagram above.

Delete filesystem Use LMI_CreateFileSystem method:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()

sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
fs = sda1.first_associator(ResultClass=’LMI_LocalFileSystem’)
(ret, outparams, err) = filesystem_service.SyncDeleteFileSystem(

TheFileSystem = fs)

Note that with one btrfs on multiple block devices, the whole btrfs volume is destroyed.

Future direction In future, we might implement:

• Add advanced options to LMI_CreateFileSystem

• Allow (some) filesystem modification, e.g. amount of reserved space for root user.

• Indications of various events, like filesystem is getting full.

272 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Block device performance

OpenLMI-Storage provider reports I/O statistics of all block devices. Every instance of CIM_StorageExtent or its
subclass has associated LMI_BlockStorageStatisticalData instance, which reports current I/O statistics like nr. of
kbytes read/written etc.

Following instance diagram shows two block devices and their associated statistics:

There are many more classes related to block device performance, but these are provided mainly for compatibility with
SMI-S. See following instance diagram, which shows the same two block devices, but now with all SMI-S classes:

The only useful method is LMI_BlockStatisticsService.GetStatisticsCollection, which returns I/O statistics
of all block devices as semicolon-separated-list. The order of fields in this list is described in
LMI_BlockStatisticsManifest.CSVSequence property.

Note: Even though properties in LMI_BlockStorageStatisticalData are 64-bit, they are tracked as 32-bit on 32-bit
systems like i686 or ppc by Linux kernel. They can wrap pretty quickly on modern hardware.

For example, with iSCSI drive on 10Gb/s link, the KBytesRead counter can wrap in around 27 minutes.

On 64-bit systems, these counters are tracked in 64-bits in Linux kernel and they wrap once in a few years.

Useful methods

LMI_BlockStatisticsService.GetStatisticsCollection Return I/O statistics of all block devices as CSV-formatted
string. (CSV = semicolon-separated list).

Note that this method is currently synchronous and does not return a Job.

Use cases

Get I/O statistics of a block device Find LMI_BlockStorageStatisticalData associated to appropriate
CIM_StorageExtent:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the /dev/sda3 device
sda3 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda3"})

Find its statistics
stat = sda3.first_associator(ResultClass="LMI_BlockStorageStatisticalData")
print "KBytesRead:", stat.KBytesRead

Get I/O statistics of all block devices I Enumerate all LMI_BlockStorageStatisticalData instances on the system:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

3.2. OpenLMI server components 273

OpenLMI Documentation, Release latest

Find all LMI_BlockStorageStatisticalData instances
stats = ns.LMI_BlockStorageStatisticalData.instances()
for stat in stats:

print "Device", stat.ElementName, "KBytesRead:", stat.KBytesRead

This approach can return huge list of LMI_BlockStorageStatisticalData instances on systems with lot of block devices.

Get I/O statistics of all block devices II Use LMI_BlockStatisticsService.GetStatisticsCollection method to get all
statistics in one method call:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Print column headers
manifest = ns.LMI_BlockStatisticsManifest.first_instance()
print ";".join(manifest.CSVSequence)

Print the real data
service = ns.LMI_BlockStatisticsService.first_instance()
(ret, outparams, err) = service.GetStatisticsCollection()
stats = outparams[’Statistics’]
for stat in stats:

print stat

Note that this method is currently synchronous and does not return a Job.

Mounting

Note: Currently, only basic mounting/unmounting works. Persistency and mount flags (i.e. bind) are not imple-
mented, yet. These limitations will be addressed in the future releases.

Every mount is represented by an LMI_MountedFileSystem instance. Each instance can have one or two
LMI_MountedFileSystemSetting instances associated to it via LMI_MountedFileSystemElementSettingData (one for
the currently mounted filesystem and one for a persistent entry in /etc/fstab). This association class has two important
properties – IsCurrent and IsNext . Their meaning is described in detail in the On modes section.

LMI_MountedFileSystemSetting is used for representing mount options (e.g. whether to mount read-write or read-
only).

The setting instance can also exists on its own. This means that it’s not connected with LMI_MountedFileSystem by
any association. Such situation can happen after CreateSetting is called. According to its ChangeableType property, it
is either deleted after an hour (ChangeableType = Transient), or has to be associated or deleted manually (Changeable
= Persistent).

Local filesystems are represented by LMI_LocalFileSystem class and its subclasses. Filesystems are associated to
LMI_MountedFileSystem via LMI_AttachedFileSystem .

Note: Currently, only local filesystems are supported.

When a filesystem is currently mounted, the directory where the LMI_MountedFileSystem instance is attached at
is represented by an LMI_UnixDirectory instance. These two instances are connected through an LMI_MountPoint
association instance.

The following diagram shows a local ext4 partition /dev/sda2 currently mounted at /boot. The filesystem is specified
by its UUID. No persitent entry in /etc/fstab is managed.

274 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

The next figure shows a local ext3 partition /dev/sda1 mounted at /home and also made persistent in /etc/fstab, both
with slightly different mount options. The filesystem is specified by its UUID. Notice that the mount options are
represented by two different LMI_MountedFileSystemSetting instances. The final diagram represents a state where
a local ext4 partition /dev/sda4, filesystem of which is specified by its UUID, is mounted at /var/log and also has the
respective entry written in /etc/fstab. Note that both settings (current mount and the persistent entry) are the same, as
is indicated by IsNext and IsCurrent being set to 1.

Note: TODO: bind mount examples, remote fs examples

Using the mounting API

On modes When calling CreateMount or DeleteMount methods, one of their arguments is a mode. The mode is
an enumeration that denotes values of two different properties of the LMI_MountedFileSystemElementSettingData
association. They are IsNext and IsCurrent. They determine if the mount operation performs mount only, adds a
persistent entry to /etc/fstab, or both.

The following table displays possible values and their respective meanings of IsNext and IsCurrent .

Value Meaning

IsNext 1 This property indicates if the associated setting will be applied as mount options on next
reinitialization, i.e. on reboot. In mounting this means persistency, an entry in /etc/fstab.

2 No entry in /etc/fstab.

IsCurrent1 This property indicates if the associated setting represents current mount options of the
MountedFileSystem.

2 The device is not mounted.

Supported modes of CreateMount, ModifyMount and DeleteMount methods and their meaning are described in the
following table. See decription of the methods for details.

Mode IsNext IsCurrent
1 1 1
2 1 Not affected.
4 2 2
5 2 Not affected.
32768 Not affected. 1
32769 Not affected. 2

Methods

CreateMount Mounts a device to the specified mountpoint.

ModifyMount Modifies (remounts) the specified filesystem.

DeleteMount Unmounts the specified filesystem.

All the methods are asynchronous.

DeleteMount() note If, after DeleteMount, IsNext and IsCurrent are both set to 2 (device was unmounted and
its persistent entry removed), the corresponding LMI_MountedFileSystem, LMI_MountedFileSystemSetting and their
association are removed. This implies that there cannot be any LMI_MountedFileSystemElementSettingData with both
IsNext and IsCurrent set to 2.

3.2. OpenLMI server components 275

OpenLMI Documentation, Release latest

Use cases Typical use of the mounting API could be like the following:

Use an LMI_MountedFileSystemCapabilities instance to create a setting instance using the CreateSetting method. This
method creates an instance of LMI_MountedFileSystemSetting class with default property values.

Modify the setting instance as needed. This is done using the ModifyInstance intrinsic method. This step is optional
if the admin is satisfied with the default set of values.

Use an LMI_MountConfigurationService to create a mount using the CreateMount method or modify a mount us-
ing the ModifyMount method. You can also use an LMI_MountConfigurationService to unmount a mount using the
DeleteMount .

Example 1 This example demonstrates mounting /dev/sda partition with a customized setting.

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

cap = ns.LMI_MountedFileSystemCapabilities.first_instance()

Create an LMI_MountedFileSystemSetting instance
(rc, out, err) = cap.CreateSetting()
setting_name = out[’Setting’]
setting = setting_name.to_instance()

Modify the setting instance with requested options
setting.AllowWrite = False
setting.InterpretDevices = False
setting.push()

Find the filesystem to mount
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
fs = sda1.first_associator(ResultClass=’LMI_LocalFileSystem’)

Mount it
Mode == 32768 -> only mount, no fstab entry
mount_service = ns.LMI_MountConfigurationService.first_instance()
(rc, out, err) = mount_service.SyncCreateMount(

Goal=setting,
FileSystemType=’ext4’,
Mode=32768,
FileSystem=fs,
MountPoint=’/mnt/test’,
FileSystemSpec=’/dev/sda1’)

Example 2 In this example, /mnt, that was mounted in Example 1, is unmounted.

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
mount_service = ns.LMI_MountConfigurationService.first_instance()

mnt = ns.LMI_MountedFileSystem.first_instance({"MountPointPath": "/mnt/test"})

if not mnt:
raise BaseException("Mountpoint does not exist: /mnt/test")

(rc, out, err) = mount_service.SyncDeleteMount(

276 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Mount=mnt,
Mode=32769)

Note: Currently, only basic mounting/unmounting works. Persistency and mount flags (i.e. bind) are not imple-
mented, yet. These limitations will be addressed in the future releases.

Storage encryption

OpenLMI supports Linux Unified Key Setup (LUKS) to encrypt block devices. This means any device can be for-
matted with LUKS, which destroys all data on the device and allows for encryption of the device future content. The
block device then contains encrypted data. To see unencrypted (clear-text) data, the LUKS format must be opened.
This operation creates new block device, which contains the clear-text data. This device is just regular block device
and can be formatted with any filesystem. All write operations are automatically encrypted and stored in the LUKS
format data.

To hide the clear-text data, the clear text device must be closed. This destroys the clear-text device, preserving only
encrypted content in the LUKS format data.

The data are encrypted by a key, which is accessible using a pass phrase. There can be up to 8 different pass phrases
per LUKS format. Any of them can be used to open the format and to unencrypt the data.

Note: There is currently no way how to specify which algorithm, key or key size will be used to actually encrypt the
data. cryptsetup defaults are applied.

CIM_StorageExtent can be recognized by LMI_LUKSFormat resides on it.

If the LMI_LUKSFormat is opened, the new clear-text device is created as LMI_LUKSStorageExtent, which has
BasedOn association to the original CIM_StorageExtent.

All operations with LUKS format can be done using LMI_ExtentEncryptionConfigurationService. Following instance
diagram shows one encrypted partition. The LUKS is not opened, which means that there is no clear-text device on the
system. Following instance diagram shows one encrypted partition with opened LUKS. That means any data written

Figure 3.11: Instance diagram of closed LUKS format on a partition.

to /dev/mapper/cleartext are automatically encrypted and stored on the partition.

Figure 3.12: Instance diagram of opened LUKS format on a partition.

Useful methods

CreateEncryptionFormat Formats a StorageExtent with LUKS format. All data on the device are destroyed.

OpenEncryptionFormat Opens given LUKS format and shows its clear-text in LMI_LUKSStorageExtent.

CloseEncryptionFormat Closes given LUKS format and destroys its previously opened LMI_LUKSStorageExtent.

AddPassphrase, DeletePassphrase Manage pass phrases for given LUKS format.

Use cases

3.2. OpenLMI server components 277

https://code.google.com/p/cryptsetup/

OpenLMI Documentation, Release latest

Create encrypted file system. Use CreateEncryptionFormat to create LUKS format, open it and create ext3 filesys-
tem on it:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
encryption_service = ns.LMI_ExtentEncryptionConfigurationService.first_instance()
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()

Find the /dev/sda1 device
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})

Format it
(ret, outparams, err) = encryption_service.SyncCreateEncryptionFormat(

InExtent=sda1, Passphrase="opensesame")
luks_format = outparams[’Format’].to_instance()

’Open’ it as /dev/mapper/secret_data
(ret, outparams, err) = encryption_service.SyncOpenEncryptionFormat(

Format=luks_format,
Passphrase="opensesame",
ElementName="secret_data")

clear_text_extent = outparams[’Extent’].to_instance()

Format the newly created clear-text device
(ret, outparams, err) = filesystem_service.SyncLMI_CreateFileSystem(
FileSystemType=filesystem_service.LMI_CreateFileSystem.FileSystemTypeValues.EXT3,
InExtents=[clear_text_extent])

The resulting situation is the same as shown in the second diagram above.

Close opened LUKS format CloseEncryptionFormat can be used to destroy the clear-text device so only encrypted
data is available. The clear-text device must be unmounted first!

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
encryption_service = ns.LMI_ExtentEncryptionConfigurationService.first_instance()

Find the LUKS format
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
luks_format = sda1.first_associator(AssocClass="LMI_ResidesOnExtent")

Close it
(ret, outparams, err) = encryption_service.SyncCloseEncryptionFormat(

Format=luks_format)

The resulting situation is the same as shown in the first diagram above.

Pass phrase management Pass phrases can be added or deleted using AddPassphrase and DeletePassphrase meth-
ods.

Following code can be used to replace weak ‘opensesame’ password with something stronger:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
encryption_service = ns.LMI_ExtentEncryptionConfigurationService.first_instance()

278 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

Find the LUKS format
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
luks_format = sda1.first_associator(AssocClass="LMI_ResidesOnExtent")

Add a pass phrase
(ret, outparams, err) = encryption_service.AddPassphrase(

Format=luks_format,
Passphrase="opensesame",
NewPassphrase="o1mcW+O27F")

Remove the old weak one
(ret, outparams, err) = encryption_service.DeletePassphrase(

Format=luks_format,
Passphrase="opensesame")

There are 8 so called key slots, which means each LUKS formats supports up to 8 different pass phrases.
Any of the pass phrases can be used to open the LUKS format. Status of these key slots can be found in
LMI_LUKSFormat.SlotStatus property.

Note: Previous releases allowed to use DeleteInstance intrinsic method to delete various
CIM_StorageExtents. This method is now deprecated and will be removed from future releases of OpenLMI-
Storage. The reason is that DeleteInstance cannot be asynchronous and could block the whole provider for a
long time.

Configuration

Configuration is stored in /etc/openlmi/storage/storage.conf.

In addition to common configuration options, this provider can be configured to allow or deny various filesystem
operations. Default configuration:

[Log]
Toggles logging of detailed debug messages in Blivet.
DebugBlivet=False

[Storage]
Path to temporary directory. The provider (usually running as root) need
read/write access there. When SELinux or other security enhancement
mechanism is used, **only** the provider should have read/write access
to this directory.
Tempdir=/tmp

Options and their values are self-explanatory.

Persistent setting

OpenLMI-Storage stores persistent data in /var/lib/openlmi-storage/. Typically, various CIM_SettingData
instances with ChangeableType Changeable - Persistent are stored here.

3.2.15 Networking Provider

OpenLMI-Networking is CIM provider which manages local network devices.

This provider is based on following DMTF standards:

3.2. OpenLMI server components 279

http://dmtf.org

OpenLMI Documentation, Release latest

• DSP1116 - IP Configuration Profile

• DSP1035 - Host LAN Network Port Profile

The knowledge of these standards is not necessary, but it can help a lot.

Application developers should first get familliar with Networking API concepts and then look at usage of OpenLMI-
Networking.

Content:

Networking API concepts

OpenLMI-Networking provides CIM API. Some CIM knowledge is required and this guide assumes that reader can
routinely read and modify remote CIM objects and call their intrinsic and extrinsic methods.

Hardware representation

There is instance of subclass of CIM_NetworkPort for each physical network device present in the system, e.g.
LMI_EthernetPort for ethernet ports.

Instances of class LMI_LANEndpoint represent communication endpoints, identified by MAC address to which the
network port will respond. It’s associated to the corresponding instance of CIM_NetworkPort subclass via instance of
LMI_NetworkDeviceSAPImplementation.

Current network configuration

LMI_IPNetworkConnection instances represents the network connection in the system, e.g. “eth0”, “p1p1”. Instances
of this class are associated to the LMI_LANEndpoint via LMI_EndpointForIPNetworkConnection.

Note: There are usually 1:1:1 relation between instances of CIM_NetworkPort subclasses, LMI_LANEndpoint
instances and LMI_IPNetworkConnection instance in this provider. The classes are implemented for sake of compat-
ibility with DMTF profiles.

LMI_IPProtocolEndpoint - there is instance of this class for each IP address on any network device and the instance is
associated with LMI_IPNetworkConnection via LMI_NetworkSAPSAPDependency and with LMI_LANEndpoint via
LMI_BindsToLANEndpoint.

Default gateway is represented by instance of LMI_NetworkRemoteServiceAccessPoint with attribute
AccessContext equal to 2 (Default Gateway).

Instances of class LMI_IPVersionSettingData represent IPv4 or IPv6 support. If there is instance of this class asso-
ciated with CIM_ComputerSystem it means that the system supports IPv4 and/or IPv6 (depending on value of the
ProtocolIFType property). Instances of this class can be associated also to LMI_IPNetworkConnection. It means that
the network connection supports IPv4 and/or IPv6.

Settings

The OpenLMI networking provider is based on concept of setting. Setting is a set of configuration options
that can be applied to an interface. Each setting is represented by instance of LMI_IPAssignmentSettingData and

280 Chapter 3. Table of Contents

http://dmtf.org/sites/default/files/standards/documents/DSP1116_1.0.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP1035_1.0.2.pdf

OpenLMI Documentation, Release latest

it is aggregator for detailed configuration represented by instances of following classes: LMI_DHCPSettingData,
LMI_DNSSettingData, LMI_ExtendedStaticIPAssignmentSettingData. These detailed settings are associated with the
master setting via LMI_OrderedIPAssignmentComponent where the master has role GroupComponent.

Settings available for given port are associated by LMI_IPElementSettingData. Its property IsCurrent is 1
when the setting is currently active. Property IsDefault is 1 when the setting is automatically activated.

Altering and applying settings

Method LMI_CreateIPSetting of the LMI_IPNetworkConnectionCapabilites class can be used to create
new setting. The setting will be tied to LMI_IPNetworkConnection that is associated with given
LMI_IPNetworkConnectionCapabilites.

Singleton class LMI_IPConfigurationService provides method ApplySettingToIPNetworkConnection that applies
LMI_IPAssignmentSettingData to LMI_IPNetworkConnection.

Bridging and bonding

Current state Instance of the LMI_LinkAggregator8023ad class represents currently active bond. It’s associated to
the LMI_LAGPort8023ad representing bonded interface via LMI_LinkAggregationBindsTo.

Instance of the LMI_SwitchService class represents currently active bridge. It’s associated to the LMI_SwitchPort
representing bridged interface via LMI_SwitchesAmong”.

Creating bridge/bond Creating bridge/bond setting is the same as creating any other setting, just the Type param-
eter of the LMI_CreateIPSetting is different (Bonding or Bridging).

Bonding/bridging setting details can be altered by changing the properties of LMI_BondingMasterSettingData (or
LMI_BridgingMasterSettingData) instance that is returned from the LMI_CreateIPSetting method.

For activating bridge/bond setting, use ApplySettingToIPNetworkConnection of the LMI_IPConfigurationService
class.

For deletion of the bridge/bond setting just delete the “master” setting (the one created by LMI_CreateIPSetting).
Deleting other settings will just remove the slave from the settings.

Enslaving First network interface is enslaved to the given bond/bridge setting automatically (depending on what
LMI_IPNetworkConnectionCapabilities is the LMI_CreateIPSetting method called). Other interface can be enslaved
by using LMI_CreateSlaveSetting method of the LMI_IPNetworkConnectionCapabilities.

Alter the LMI_BondingSlaveSettingData (or LMI_BridgingSlaveSettingData) instance to change the properties of
bond/bridge slave.

Usage

All example scripts are for lmishell. See it’s documentation on OpenLMI page.

We also assume that lmishell is connected to the CIMOM and the connection is stored in connection variable
and variable ns points to cimv2 namespace:

connection = connect("server", "username", "password")
ns = connection.root.cimv2

3.2. OpenLMI server components 281

https://fedorahosted.org/openlmi/wiki/shell
https://fedorahosted.org/openlmi/

OpenLMI Documentation, Release latest

Enumeration of network devices

Obtaining a list of network devices can be done by executing following commands in lmishell:

for device in ns.LMI_IPNetworkConnection.instances():
print device.ElementName

Get parameters of network devices

Obtaining parameters of network device might be a little bit tricky. DMTF standards split network device to three
classes and one might need to traverse between them through associations, see Networking API concepts.

Following example prints name, its status, MAC address, link technology and maximal speed for each device.

MAC address is not in the LMI_IPNetworkConnection class and must be accessed through
LMI_EndpointForIPNetworkConnection association to LMI_LANEndpoint class, same for MaxSpeed and Link-
Technology, those are in CIM_NetworkPort subclasses, associated through LMI_NetworkDeviceSAPImplementation
class:

for device in ns.LMI_IPNetworkConnection.instances():
print device name
print device.ElementName,
print operating status
print ns.LMI_IPNetworkConnection.OperatingStatusValues.value_name(device.OperatingStatus),

MAC address in not part of LMI_IPNetworkConnection but LMI_LANEndpoint class,
which is associated through LMI_EndpointForIPNetworkConnection
lanendpoint = device.first_associator(AssocClass="LMI_EndpointForIPNetworkConnection")

print MAC address
print lanendpoint.MACAddress,

LinkTechnology is part of CIM_NetworkPort subclasses, we need to traverse
through LMI_NetworkDeviceSAPImplementation association
networkport = lanendpoint.first_associator(AssocClass="LMI_NetworkDeviceSAPImplementation")

print link technology
print ns.CIM_NetworkPort.LinkTechnologyValues.value_name(networkport.LinkTechnology),

network speed might not be defined
if networkport.MaxSpeed:

Convert bps to Mbps
print "%dMbps" % (networkport.MaxSpeed // (1024*1024)),

else:
print "unknown",

print

Get current IP configuration

Current IP addresses are in the LMI_IPProtocolEndpoint class associated to given LMI_IPNetworkConnection:

device = ns.LMI_IPNetworkConnection.first_instance({’ElementName’: ’eth0’})
for endpoint in device.associators(AssocClass="LMI_NetworkSAPSAPDependency", ResultClass="LMI_IPProtocolEndpoint"):

if endpoint.ProtocolIFType == ns.LMI_IPProtocolEndpoint.ProtocolIFTypeValues.IPv4:
print "IPv4: %s/%s" % (endpoint.IPv4Address, endpoint.SubnetMask)

282 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

elif endpoint.ProtocolIFType == ns.LMI_IPProtocolEndpoint.ProtocolIFTypeValues.IPv6:
print "IPv6: %s/%d" % (endpoint.IPv6Address, endpoint.IPv6SubnetPrefixLength)

Default gateway is represented by instance of LMI_NetworkRemoteServiceAccessPoint with AccessContext equal
to DefaultGateway:

for rsap in device.associators(AssocClass="LMI_NetworkRemoteAccessAvailableToElement", ResultClass="LMI_NetworkRemoteServiceAccessPoint"):
if rsap.AccessContext == ns.LMI_NetworkRemoteServiceAccessPoint.AccessContextValues.DefaultGateway:

print "Default Gateway: %s" % rsap.AccessInfo

For the list of DNS servers we need to traverse the object model a little bit. First get LMI_IPProtocolEndpoint instances
associated with given LMI_IPNetworkConnection via LMI_NetworkSAPSAPDependency. Then use the same associ-
ation to get instances of LMI_DNSProtocolEndpoint. Finally instances of LMI_NetworkRemoteServiceAccessPoint
with AccessContext equal to DNS Server associated through LMI_NetworkRemoteAccessAvailableToElement
have the DNS server address in the AccessInfo property.

Note that there might be more possible path to get to the RemoteServiceAccessPath and you might get duplicated
entries. The set is used here to deduplicate the list of DNS servers:

dnsservers = set()
for ipendpoint in device.associators(AssocClass="LMI_NetworkSAPSAPDependency", ResultClass="LMI_IPProtocolEndpoint"):

for dnsedpoint in ipendpoint.associators(AssocClass="LMI_NetworkSAPSAPDependency", ResultClass="LMI_DNSProtocolEndpoint"):
for rsap in dnsedpoint.associators(AssocClass="LMI_NetworkRemoteAccessAvailableToElement", ResultClass="LMI_NetworkRemoteServiceAccessPoint"):

if rsap.AccessContext == ns.LMI_NetworkRemoteServiceAccessPoint.AccessContextValues.DNSServer:
dnsservers.add(rsap.AccessInfo)

print "DNS:", ", ".join(dnsservers)

Bring up / take down a network device

Note: Changing the state of a network device is not recommended! Just disconnect the active setting.

Use method RequestStateChange of the LMI_LANEndpoint object. RequestedState parameter can be either
Enabled or Disabled:

lanendpoint = ns.LMI_LANEndpoint.first_instance({ "ElementName": "eth0" })
lanendpoint.RequestStateChange(RequestedState=ns.LMI_LANEndpoint.RequestedStateValues.Enabled)

Enumerate available settings

One setting is a set of configuration options that are applicable to a network interface. This setting is represented by a
LMI_IPAssignmentSettingData instances that have AddressOrigin equal to Cumulative Configuration:

for settingdata in ns.LMI_IPAssignmentSettingData.instances():
if settingdata.AddressOrigin == ns.LMI_IPAssignmentSettingData.AddressOriginValues.cumulativeconfiguration:

print "Setting: %s" % settingdata.Caption

Obtaining setting details

Setting configuration is spread between the instances of LMI_IPAssignmentSettingData subclasses associated with the
“master” setting:

3.2. OpenLMI server components 283

OpenLMI Documentation, Release latest

settingdata = ns.LMI_IPAssignmentSettingData.first_instance({ "Caption": "eth0" })
for setting in settingdata.associators(AssocClass="LMI_OrderedIPAssignmentComponent"):

if setting.classname == "LMI_DHCPSettingData":
if setting.ProtocolIFType == ns.LMI_IPAssignmentSettingData.ProtocolIFTypeValues.IPv4:

print "IPv4 DHCP"
else:

print "IPv6 DHCPv6"
elif setting.classname == "LMI_ExtendedStaticIPAssignmentSettingData":

for i in range(len(setting["IPAddresses"])):
if setting["ProtocolIFType"] == ns.LMI_IPAssignmentSettingData.ProtocolIFTypeValues.IPv4:

print "Static IPv4 address: %s/%s, Gateway %s" % (
setting["IPAddresses"][i],
setting["SubnetMasks"][i],
setting["GatewayAddresses"][i])

else:
print "Static IPv6 address: %s/%d, Gateway %s" % (

setting["IPAddresses"][i],
setting["IPv6SubnetPrefixLengths"][i],
setting["GatewayAddresses"][i])

elif (setting.classname == "LMI_IPAssignmentSettingData" and
setting["AddressOrigin"] == ns.LMI_IPAssignmentSettingData.AddressOriginValues.Stateless):

print "IPv6 Stateless"

Create new setting

New setting is created by calling LMI_CreateIPSetting method on the instance of
LMI_IPNetworkConnectionCapabilities, which is associated with LMI_IPNetworkConnection through
LMI_IPNetworkConnectionElementCapabilities. It also has the ElementName property same as is the name
of the network interface.

Created setting can be modified by using ModifyInstance intrinsic method (push() in the lmishell).

Let’s say we want to create a new setting with static IPv4 and stateless IPv6 configuration for given network interface:

capability = ns.LMI_IPNetworkConnectionCapabilities.first_instance({ ’ElementName’: ’eth0’ })
result = capability.LMI_CreateIPSetting(Caption=’eth0 Static’,

IPv4Type=capability.LMI_CreateIPSetting.IPv4TypeValues.Static,
IPv6Type=capability.LMI_CreateIPSetting.IPv6TypeValues.Stateless)

setting = result.rparams["SettingData"].to_instance()
for settingData in setting.associators(AssocClass="LMI_OrderedIPAssignmentComponent"):

if setting.ProtocolIFType == ns.LMI_IPAssignmentSettingData.ProtocolIFTypeValues.IPv4:
Set static IPv4 address
settingData.IPAddresses = ["192.168.1.100"]
settingData.SubnetMasks = ["255.255.0.0"]
settingData.GatewayAddresses = ["192.168.1.1"]
settingData.push()

Set DNS servers for given setting

DNS server for given setting is stored in the DNSServerAddresses property of class LMI_DNSSettingData.

Following code adds IPv4 DNS server to the existing setting:

setting = ns.LMI_IPAssignmentSettingData.first_instance({ "Caption": "eth0 Static" })
for settingData in setting.associators(AssocClass="LMI_OrderedIPAssignmentComponent"):

if (settingData.classname == "LMI_DNSSettingData" and

284 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

settingData.ProtocolIFType == ns.LMI_IPAssignmentSettingData.ProtocolIFTypeValues.IPv4):
settingData.DNSServerAddresses.append("192.168.1.1")
settingData.push()

Manage static routes for given setting

Static route can be added by calling LMI_AddStaticIPRoute method on the instance of the
LMI_IPAssignmentSettingData class:

setting = ns.LMI_IPAssignmentSettingData.first_instance({ "Caption": "eth0 Static" })
result = setting.LMI_AddStaticIPRoute(

AddressType=setting.LMI_AddStaticIPRouteValues.IPv4,
DestinationAddress="192.168.2.1",
DestinationMask="255.255.255.0")

route = result.rparams["Route"]

Additional parameters can be set by modifying the instance of LMI_IPRouteSettingData. The route can be deleted by
using DeleteInstance intrinsic method (delete() in lmishell).

Delete setting

For setting deletion just call DeleteInstance intrinsic method (delete() in the lmishell) to the instance of
LMI_IPAssignmentSettingData:

setting = ns.LMI_IPAssignmentSettingData.first_instance({ ’Caption’: ’eth0 Static’ })
setting.delete()

Apply setting

The setting can by applied to the network interface by calling ApplySettingToIPNetworkConnection of the
LMI_IPConfigurationService class.

This method is asynchronous and returns a job, but lmishell can call it synchronously:

setting = ns.LMI_IPAssignmentSettingData.first_instance({ "Caption": "eth0 Static" })
port = ns.LMI_IPNetworkConnection.first_instance({ ’ElementName’: ’ens8’ })
service = ns.LMI_IPConfigurationService.first_instance()
service.SyncApplySettingToIPNetworkConnection(SettingData=setting, IPNetworkConnection=port, Mode=32768)

Mode parameter affects how is the setting applied. Most commonly used values are:

• Mode 1 – apply the setting now and make it auto-activated

• Mode 2 – just make it auto-activated, don’t apply now

• Mode 4 – disconnect and disable auto-activation

• Mode 5 – don’t change the setting state, only disable auto-activation

• Mode 32768 – apply the setting

• Mode 32769 – disconnect

3.2. OpenLMI server components 285

OpenLMI Documentation, Release latest

Bridging and bonding

Warning: Bridge, bond and vlan support needs to be explicitly enabled when using 0.8 version of Network-
Manager as a backend (for example on RHEL-6). Add following line to the /etc/sysconfig/network file and restart
NetworkManager
NM_BOND_BRIDGE_VLAN_ENABLED=yes

Setting up Use following code to create and activate bond with eth0 and eth1 interfaces:

Get the interfaces
interface1 = ns.LMI_IPNetworkConnection.first_instance({ ’ElementName’: ’eth0’ })
interface2 = ns.LMI_IPNetworkConnection.first_instance({ ’ElementName’: ’eth1’ })

Get the capabilities
capability1 = interface1.first_associator(AssocClass="LMI_IPNetworkConnectionElementCapabilities",

ResultClass="LMI_IPNetworkConnectionCapabilities")
capability2 = interface2.first_associator(AssocClass="LMI_IPNetworkConnectionElementCapabilities",

ResultClass="LMI_IPNetworkConnectionCapabilities")
Use one of the capabilities to create the bond
result = capability1.LMI_CreateIPSetting(Caption=’Bond’,

Type=capability1.LMI_CreateIPSetting.TypeValues.Bonding,
IPv4Type=capability1.LMI_CreateIPSetting.IPv4TypeValues.DHCP)

setting = result.rparams["SettingData"].to_instance()
Get first slave setting
slave1setting = setting.first_associator_name(ResultClass="LMI_BondingSlaveSettingData",

AssocClass="LMI_OrderedIPAssignmentComponent")
Enslave the second interface using the second capability
result = capability2.LMI_CreateSlaveSetting(MasterSettingData=setting)
Get second slave setting
slave2setting = result.rparams["SettingData"]
service = ns.LMI_IPConfigurationService.first_instance()
Activate the bond
service.SyncApplySettingToIPNetworkConnection(

SettingData=slave1setting,
IPNetworkConnection=interface1,
Mode=32768)

service.SyncApplySettingToIPNetworkConnection(
SettingData=slave2setting,
IPNetworkConnection=interface2,
Mode=32768)

Displaying current state Following code displays existing bonds and bonded interfaces:

for linkaggregation in ns.LMI_LinkAggregator8023ad.instances():
print "Bond: %s" % linkaggregation.Name
for lagport in linkaggregation.associators(AssocClass="LMI_LinkAggregationBindsTo",

ResultClass="LMI_LAGPort8023ad"):
print "Bonded interface: %s" % lagport.Name

Following code displays existing bridges and bridged interfaces:

for switchservice in ns.LMI_SwitchService.instances():
print "Bridge: %s" % switchservice.Name
for switchport in switchservice.associators(AssocClass="LMI_SwitchesAmong",

286 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

ResultClass="LMI_SwitchPort"):
print "Bridged interface: %s" % switchport.Name

OpenLMI Classes:

3.2.16 CIM classes

As described elsewhere, WBEM just provides remote API over set of protocols. This API is object oriented and here
you can find list of all classes that are remotely accessible.

The list is organized into inheritance tree(s).

CIM_AbstractComponent
– CIM_Component

– CIM_OrderedComponent
| – LMI_OrderedIPAssignmentComponent
– CIM_DirectoryContainsFile
| – LMI_DirectoryContainsFile
– CIM_SettingsDefineCapabilities
| – LMI_SettingsDefineManagementCapabilities
| – LMI_SettingsDefineAccountCapabilities
– CIM_SystemComponent
| – CIM_HostedFileSystem
| | – LMI_HostedFileSystem
| – CIM_AccountOnSystem
| | – LMI_AccountOnSystem
| – CIM_SystemDevice
| – LMI_NetworkSystemDevice
| – LMI_PCIDeviceSystemDevice
| – LMI_SystemStorageDevice
| – LMI_MemorySystemDevice
| – LMI_BatterySystemDevice
| – LMI_ProcessorSystemDevice
| – LMI_PCIBridgeSystemDevice
| – LMI_DiskDriveSystemDevice
– CIM_AssociatedComponentExtent
| – LMI_VGAssociatedComponentExtent
– CIM_Container
| – LMI_SystemSlotContainer
| – LMI_DiskPhysicalPackageContainer
| – LMI_BaseboardContainer
| – LMI_PhysicalBatteryContainer
| – LMI_MemorySlotContainer
| – LMI_PortPhysicalConnectorContainer
| – LMI_ProcessorChipContainer
| – LMI_PhysicalMemoryContainer
– LMI_RootDirectory

3.2. OpenLMI server components 287

OpenLMI Documentation, Release latest

CIM_AbstractElementStatisticalData
– CIM_ElementStatisticalData

– LMI_StorageElementStatisticalData

CIM_AffectedJobElement
– LMI_AffectedJobElement

– LMI_AffectedSoftwareJobElement
– LMI_AffectedStorageJobElement
– LMI_AffectedNetworkJobElement
– LMI_AffectedSELinuxJobElement

CIM_AssignedIdentity
– LMI_AssignedGroupIdentity
– LMI_AssignedAccountIdentity

CIM_AssociatedBlockStatisticsManifestCollection
– LMI_AssociatedBlockStatisticsManifestCollection

CIM_AssociatedJobMethodResult
– LMI_AssociatedJobMethodResult

– LMI_AssociatedSoftwareJobMethodResult
– LMI_AssociatedSELinuxJobMethodResult
– LMI_AssociatedStorageJobMethodResult

CIM_Dependency
– CIM_RemoteAccessAvailableToElement
| – LMI_NetworkRemoteAccessAvailableToElement
– LMI_SELinuxServiceHasElement
– CIM_AbstractBasedOn
| – CIM_BasedOn
| – LMI_MDRAIDBasedOn
| – LMI_PartitionBasedOn
| – LMI_LVBasedOn
| – LMI_LUKSBasedOn
– CIM_MediaPresent
| – LMI_MediaPresent
– CIM_RouteUsesEndpoint
| – LMI_RouteUsesEndpoint
– CIM_AssociatedSensor
| – LMI_FanAssociatedSensor
– CIM_Realizes
| – LMI_PhysicalMemoryRealizes
| – LMI_ProcessorChipRealizes
| – LMI_PhysicalBatteryRealizes
| – LMI_DiskDriveRealizes
– CIM_DeviceSAPImplementation

288 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

| – LMI_DiskDriveDeviceSAPImplementation
| – LMI_NetworkDeviceSAPImplementation
– LMI_MountPoint
– CIM_ElementInConnector
| – CIM_PackageInConnector
| – LMI_MemoryPhysicalPackageInConnector
– CIM_ElementSoftwareIdentity
| – LMI_DiskDriveElementSoftwareIdentity
– CIM_AbstractElementAllocatedFromPool
| – CIM_ElementAllocatedFromPool
| – CIM_AllocatedFromStoragePool
| – LMI_LVAllocatedFromStoragePool
| – LMI_VGAllocatedFromStoragePool
– LMI_AttachedFileSystem
– CIM_SAPSAPDependency
| – CIM_EndpointForIPNetworkConnection
| | – LMI_EndpointForIPNetworkConnection
| – CIM_BindsTo
| | – CIM_BindsToLANEndpoint
| | | – LMI_BindsToLANEndpoint
| | – LMI_LinkAggregationBindsTo
| – LMI_NetworkSAPSAPDependency
– CIM_ServiceSAPDependency
| – CIM_ForwardsAmong
| – CIM_SwitchesAmong
| – LMI_SwitchesAmong
– CIM_SystemPackaging
| – CIM_ComputerSystemPackage
| – LMI_ChassisComputerSystemPackage
– CIM_AssociatedMemory
| – CIM_AssociatedCacheMemory
| – LMI_AssociatedProcessorCacheMemory
– LMI_HostedMount
– CIM_ResidesOnExtent
| – LMI_ResidesOnExtent
– CIM_HostedDependency
| – CIM_HostedAccessPoint
| | – LMI_HostedSoftwareIdentityResource
| | – LMI_NetworkHostedAccessPoint
| – CIM_HostedService
| | – LMI_HostedIPConfigurationService
| | – LMI_HostedSSSDService
| | – LMI_HostedSystemService
| | – LMI_HostedStorageService
| | – LMI_HostedAccountManagementService
| | – LMI_HostedSoftwareInstallationService
| | – LMI_HostedSELinuxService

3.2. OpenLMI server components 289

OpenLMI Documentation, Release latest

| | – LMI_HostedRealmdService
| | – LMI_HostedPowerManagementService
| – CIM_HostedCollection
| – LMI_HostedSoftwareCollection
| – LMI_HostedStorageStatisticsCollection
– CIM_InstalledPartitionTable

– LMI_InstalledPartitionTable

CIM_ElementCapabilities
– LMI_BlockStorageStatisticsElementCapabilities
– LMI_AssociatedSoftwareInstallationServiceCapabilities
– LMI_NetworkElementCapabilities
– LMI_FileSystemConfigurationElementCapabilities
– LMI_MDRAIDElementCapabilities
– LMI_LVElementCapabilities
– LMI_FileSystemElementCapabilities
– LMI_ProcessorElementCapabilities
– LMI_MountElementCapabilities
– LMI_VGElementCapabilities
– LMI_AccountManagementServiceCapabilities
– LMI_AccountCapabilities
– LMI_IPNetworkConnectionElementCapabilities
– LMI_ElementCapabilities
– LMI_DiskPartitionElementCapabilities

CIM_ElementSettingData
– LMI_FileSystemElementSettingData
– LMI_IPVersionElementSettingData
– LMI_MDRAIDElementSettingData
– LMI_AccountManagementServiceSettingData
– LMI_LVElementSettingData
– LMI_DiskPartitionElementSettingData
– LMI_IPElementSettingData
– LMI_VGElementSettingData
– LMI_MountedFileSystemElementSettingData

CIM_Indication
– CIM_InstIndication

– CIM_InstModification
| – LMI_NetworkInstModification
| – LMI_ServiceInstanceModificationIndication
| – LMI_SoftwareInstModification
| – LMI_SELinuxInstModification
| – LMI_StorageInstModification
– CIM_InstCreation
| – LMI_SoftwareInstCreation
| – LMI_JournalLogRecordInstanceCreationIndication

290 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

| – LMI_SELinuxInstCreation
| – LMI_AccountInstanceCreationIndication
| – LMI_StorageInstCreation
| – LMI_NetworkInstCreation
– CIM_InstMethodCall
– CIM_InstDeletion

– LMI_SELinuxInstDeletion
– LMI_SoftwareInstDeletion
– LMI_NetworkInstDeletion
– LMI_AccountInstanceDeletionIndication

CIM_InstalledSoftwareIdentity
– LMI_InstalledSoftwareIdentity

CIM_LogicalIdentity
– CIM_EndpointIdentity
| – LMI_EndpointIdentity
– CIM_ConcreteIdentity
| – LMI_LinkAggregationConcreteIdentity
– CIM_FileIdentity

– LMI_FileIdentity

CIM_ManagedElement
– LMI_SSSDDomain
– CIM_Identity
| – LMI_Identity
– CIM_SettingData
| – CIM_IPAssignmentSettingData
| | – LMI_IPAssignmentSettingData
| | | – LMI_BondingMasterSettingData
| | | – LMI_BridgingSlaveSettingData
| | | – LMI_BridgingMasterSettingData
| | | – LMI_BondingSlaveSettingData
| | | – LMI_IPRouteSettingData
| | – CIM_ExtendedStaticIPAssignmentSettingData
| | | – LMI_ExtendedStaticIPAssignmentSettingData
| | – CIM_DHCPSettingData
| | | – LMI_DHCPSettingData
| | – CIM_DNSSettingData
| | – LMI_DNSSettingData
| – CIM_IPVersionSettingData
| | – LMI_IPVersionSettingData
| – LMI_MountedFileSystemSetting
| – CIM_FileSystemSetting
| | – LMI_FileSystemSetting
| – CIM_StorageSetting
| | – LMI_StorageSetting

3.2. OpenLMI server components 291

OpenLMI Documentation, Release latest

| | – LMI_VGStorageSetting
| | – LMI_MDRAIDStorageSetting
| | – LMI_LVStorageSetting
| – CIM_AccountSettingData
| | – LMI_AccountSettingData
| – LMI_DiskPartitionConfigurationSetting
– LMI_SSSDComponent
| – LMI_SSSDBackend
| – LMI_SSSDResponder
| – LMI_SSSDMonitor
– LMI_SSSDProvider
– CIM_MethodResult
| – LMI_MethodResult
| – LMI_SELinuxMethodResult
| – LMI_SoftwareMethodResult
| – LMI_StorageMethodResult
– CIM_Check
| – CIM_FileSpecification
| – LMI_SoftwareIdentityFileCheck
– CIM_Capabilities
| – CIM_DiskPartitionConfigurationCapabilities
| | – LMI_DiskPartitionConfigurationCapabilities
| – CIM_SoftwareInstallationServiceCapabilities
| | – LMI_SoftwareInstallationServiceCapabilities
| – CIM_FileSystemCapabilities
| | – LMI_FileSystemCapabilities
| – CIM_FileSystemConfigurationCapabilities
| | – LMI_FileSystemConfigurationCapabilities
| – CIM_StatisticsCapabilities
| | – CIM_BlockStatisticsCapabilities
| | – LMI_BlockStatisticsCapabilities
| – CIM_PowerManagementCapabilities
| | – LMI_PowerManagementCapabilities
| – LMI_MountedFileSystemCapabilities
| – CIM_StorageCapabilities
| | – LMI_VGStorageCapabilities
| | – LMI_LVStorageCapabilities
| | – LMI_MDRAIDStorageCapabilities
| – CIM_EnabledLogicalElementCapabilities
| – LMI_EnabledAccountCapabilities
| – CIM_ProcessorCapabilities
| | – LMI_ProcessorCapabilities
| – LMI_IPNetworkConnectionCapabilities
| – LMI_NetworkEnabledLogicalElementCapabilities
| – CIM_AccountManagementCapabilities
| – LMI_AccountManagementCapabilities
– LMI_MountedFileSystem

292 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

– CIM_RecordForLog
| – CIM_LogRecord
| – LMI_JournalLogRecord
– CIM_ManagedSystemElement
| – CIM_LogicalElement
| | – CIM_LogicalFile
| | | – CIM_FIFOPipeFile
| | | | – LMI_FIFOPipeFile
| | | – CIM_DeviceFile
| | | | – CIM_UnixDeviceFile
| | | | – LMI_UnixDeviceFile
| | | – CIM_Directory
| | | | – CIM_UnixDirectory
| | | | – LMI_UnixDirectory
| | | – CIM_DataFile
| | | | – LMI_UnixSocket
| | | | – LMI_DataFile
| | | – CIM_SymbolicLink
| | | – LMI_SymbolicLink
| | – CIM_EnabledLogicalElement
| | | – CIM_Account
| | | | – LMI_Account
| | | – CIM_Log
| | | | – CIM_MessageLog
| | | | – LMI_JournalMessageLog
| | | – LMI_DataFormat
| | | | – LMI_PVFormat
| | | | – LMI_EncryptionFormat
| | | | | – LMI_LUKSFormat
| | | | – LMI_MDRAIDFormat
| | | – CIM_Service
| | | | – LMI_Service
| | | | – CIM_SoftwareInstallationService
| | | | | – LMI_SoftwareInstallationService
| | | | – CIM_SecurityService
| | | | | – LMI_AccountManagementService
| | | | – LMI_RealmdService
| | | | – CIM_DiskPartitionConfigurationService
| | | | | – LMI_DiskPartitionConfigurationService
| | | | – CIM_StatisticsService
| | | | | – CIM_BlockStatisticsService
| | | | | – LMI_BlockStatisticsService
| | | | – LMI_SSSDService
| | | | – CIM_StorageConfigurationService
| | | | | – LMI_StorageConfigurationService
| | | | – CIM_FileSystemConfigurationService
| | | | | – LMI_FileSystemConfigurationService

3.2. OpenLMI server components 293

OpenLMI Documentation, Release latest

| | | | – CIM_NetworkService
| | | | | – CIM_ForwardingService
| | | | | – CIM_SwitchService
| | | | | – LMI_SwitchService
| | | | – CIM_IPConfigurationService
| | | | | – LMI_IPConfigurationService
| | | | – CIM_PowerManagementService
| | | | | – LMI_PowerManagementService
| | | | – LMI_MountConfigurationService
| | | | – LMI_SELinuxService
| | | | – LMI_ExtentEncryptionConfigurationService
| | | – CIM_LogicalDevice
| | | | – CIM_UserDevice
| | | | | – CIM_PointingDevice
| | | | | – LMI_PointingDevice
| | | | – CIM_StorageExtent
| | | | | – CIM_LogicalDisk
| | | | | – CIM_Memory
| | | | | | – LMI_ProcessorCacheMemory
| | | | | | – LMI_Memory
| | | | | – CIM_MediaPartition
| | | | | | – CIM_GenericDiskPartition
| | | | | | – CIM_DiskPartition
| | | | | | | – LMI_DiskPartition
| | | | | | – CIM_VTOCDiskPartition
| | | | | | – CIM_GPTDiskPartition
| | | | | | – LMI_GenericDiskPartition
| | | | | – LMI_StorageExtent
| | | | | – LMI_LVStorageExtent
| | | | | – LMI_EncryptionExtent
| | | | | | – LMI_LUKSStorageExtent
| | | | | – LMI_MDRAIDStorageExtent
| | | | – CIM_PowerSource
| | | | | – CIM_Battery
| | | | | – LMI_Battery
| | | | – CIM_MediaAccessDevice
| | | | | – CIM_DiskDrive
| | | | | – LMI_DiskDrive
| | | | – CIM_CoolingDevice
| | | | | – CIM_Fan
| | | | | – LMI_Fan
| | | | – CIM_Processor
| | | | | – LMI_Processor
| | | | – CIM_Controller
| | | | | – CIM_PCIController
| | | | | – CIM_PCIDevice
| | | | | – CIM_PCIBridge

294 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

| | | | | | – LMI_PCIBridge
| | | | | – LMI_PCIDevice
| | | | – CIM_Sensor
| | | | | – CIM_NumericSensor
| | | | | – LMI_FanSensor
| | | | – CIM_LogicalPort
| | | | – CIM_NetworkPort
| | | | | – CIM_EthernetPort
| | | | | – LMI_EthernetPort
| | | | – CIM_ATAPort
| | | | – LMI_DiskDriveATAPort
| | | – CIM_ServiceAccessPoint
| | | | – CIM_IPNetworkConnection
| | | | | – LMI_IPNetworkConnection
| | | | – CIM_ProtocolEndpoint
| | | | | – CIM_LinkAggregator8023ad
| | | | | | – LMI_LinkAggregator8023ad
| | | | | – CIM_SwitchPort
| | | | | | – LMI_SwitchPort
| | | | | – CIM_DNSProtocolEndpoint
| | | | | | – LMI_DNSProtocolEndpoint
| | | | | – CIM_IPProtocolEndpoint
| | | | | | – LMI_IPProtocolEndpoint
| | | | | – CIM_ATAProtocolEndpoint
| | | | | | – LMI_DiskDriveATAProtocolEndpoint
| | | | | – CIM_LAGPort8023ad
| | | | | | – LMI_LAGPort8023ad
| | | | | – CIM_LANEndpoint
| | | | | – LMI_LANEndpoint
| | | | – CIM_RemoteServiceAccessPoint
| | | | – CIM_SoftwareIdentityResource
| | | | | – LMI_SoftwareIdentityResource
| | | | – LMI_NetworkRemoteServiceAccessPoint
| | | – CIM_FileSystem
| | | – CIM_LocalFileSystem
| | | – LMI_LocalFileSystem
| | | – LMI_TransientFileSystem
| | – CIM_SoftwareIdentity
| | | – LMI_SoftwareIdentity
| | | – LMI_DiskDriveSoftwareIdentity
| | – CIM_ResourcePool
| | | – CIM_StoragePool
| | | – LMI_VGStoragePool
| | – CIM_UnixFile
| | | – LMI_UnixFile
| | – CIM_Job
| | – CIM_ConcreteJob

3.2. OpenLMI server components 295

OpenLMI Documentation, Release latest

| | – LMI_PowerConcreteJob
| | – LMI_ConcreteJob
| | – LMI_NetworkJob
| | – LMI_SoftwareJob
| | | – LMI_SoftwareInstallationJob
| | | – LMI_SoftwareVerificationJob
| | – LMI_SELinuxJob
| | – LMI_StorageJob
| – CIM_PhysicalElement
| – CIM_PhysicalPackage
| | – LMI_DiskPhysicalPackage
| | – LMI_BatteryPhysicalPackage
| | – CIM_Card
| | | – LMI_Baseboard
| | – CIM_PhysicalFrame
| | | – CIM_Chassis
| | | – LMI_Chassis
| | – LMI_MemoryPhysicalPackage
| – CIM_PhysicalComponent
| | – CIM_Chip
| | – CIM_PhysicalMemory
| | | – LMI_PhysicalMemory
| | – LMI_ProcessorChip
| – CIM_PhysicalConnector
| – CIM_Slot
| | – LMI_SystemSlot
| | – LMI_MemorySlot
| – LMI_PortPhysicalConnector
– LMI_SELinuxElement
| – LMI_SELinuxBoolean
| – LMI_SELinuxPort
– CIM_Collection
| – CIM_Group
| | – LMI_Group
| – CIM_SystemSpecificCollection
| – CIM_BlockStatisticsManifestCollection
| | – LMI_BlockStatisticsManifestCollection
| – CIM_StatisticsCollection
| | – LMI_StorageStatisticsCollection
| – LMI_SystemSoftwareCollection
– CIM_StatisticalData
| – PCP_MetricValue
| – CIM_NetworkPortStatistics
| | – CIM_EthernetPortStatistics
| | – LMI_EthernetPortStatistics
| – CIM_BlockStorageStatisticalData
| – LMI_BlockStorageStatisticalData

296 Chapter 3. Table of Contents

OpenLMI Documentation, Release latest

– CIM_Setting
| – CIM_SystemSetting
| – LMI_Locale
– CIM_NextHopRoute
| – CIM_NextHopIPRoute
| – LMI_NextHopIPRoute
– CIM_BlockStatisticsManifest

– LMI_BlockStatisticsManifest

CIM_MemberOfCollection
– LMI_MemberOfGroup
– LMI_MemberOfStorageStatisticsCollection
– LMI_MemberOfBlockStatisticsManifestCollection
– LMI_MemberOfSoftwareCollection

CIM_OwningCollectionElement
– LMI_OwningGroup

CIM_OwningJobElement
– LMI_OwningJobElement

– LMI_OwningSoftwareJobElement
– LMI_OwningStorageJobElement
– LMI_OwningNetworkJobElement

CIM_RecordInLog
– LMI_JournalRecordInLog

CIM_SAPAvailableForElement
– LMI_ResourceForSoftwareIdentity
– LMI_DiskDriveSAPAvailableForElement

CIM_ServiceAffectsElement
– LMI_ServiceAffectsIdentity
– LMI_SoftwareInstallationServiceAffectsElement
– LMI_IPConfigurationServiceAffectsElement

CIM_ServiceAvailableToElement
– CIM_AssociatedPowerManagementService

– LMI_AssociatedPowerManagementService

LMI_SSSDAvailableComponent

LMI_SSSDAvailableDomain

LMI_SSSDBackendDomain

LMI_SSSDBackendProvider

3.2. OpenLMI server components 297

OpenLMI Documentation, Release latest

LMI_SSSDDomainSubdomain

LMI_SoftwareIdentityChecks

298 Chapter 3. Table of Contents

Python Module Index

l
lmi.scripts.account, 164
lmi.scripts.hardware, 166
lmi.scripts.journald, 168
lmi.scripts.locale, 168
lmi.scripts.logicalfile.logicalfile, 169
lmi.scripts.networking, 170
lmi.scripts.powermanagement, 176
lmi.scripts.realmd, 176
lmi.scripts.service, 177
lmi.scripts.software, 178
lmi.scripts.sssd, 182
lmi.scripts.storage, 182
lmi.scripts.storage.common, 183
lmi.scripts.storage.fs, 190
lmi.scripts.storage.luks, 186
lmi.scripts.storage.lvm, 188
lmi.scripts.storage.partition, 185
lmi.scripts.storage.raid, 189
lmi.scripts.storage.show, 191
lmi.scripts.system, 192
lmi.shell.LMIShellVersion, 127

299

OpenLMI Documentation, Release latest

300 Python Module Index

Index

A
activate() (in module lmi.scripts.networking), 171
active (lmi.shell.LMIShellCache.LMIShellCache at-

tribute), 121
add_class() (lmi.shell.LMIShellCache.LMIShellCache

method), 121
add_dns_server() (in module lmi.scripts.networking), 171
add_handler() (lmi.shell.LMIIndicationListener.LMIIndicationListener

method), 103
add_ip_address() (in module lmi.scripts.networking), 171
add_luks_passphrase() (in module

lmi.scripts.storage.luks), 186
add_static_route() (in module lmi.scripts.networking),

171
add_superclass() (lmi.shell.LMIShellCache.LMIShellCache

method), 121
add_to_group() (in module lmi.scripts.account), 164
And (class in lmi.scripts.common.versioncheck.parser),

162
app (lmi.scripts.common.command.base.LmiBaseCommand

attribute), 139
association() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 131
associator_names() (lmi.shell.LMIInstance.LMIInstance

method), 110
associator_names() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 104
associators() (lmi.shell.LMIInstance.LMIInstance

method), 111
associators() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 104
attr_matches() (lmi.shell.LMICompleter.LMICompleter

method), 91

B
bnf_parser() (in module

lmi.scripts.common.versioncheck.parser),
163

C
cache (lmi.shell.LMIShellClient.LMIShellClient at-

tribute), 123
call_method() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 81
call_method() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 132
callback_attach() (lmi.shell.LMIMethod.LMIMethodSignalHelper

method), 118
callback_detach() (lmi.shell.LMIMethod.LMIMethodSignalHelper

method), 118
cert_file (lmi.shell.LMIShellConfig.LMIShellConfig at-

tribute), 124
check_result() (lmi.scripts.common.command.checkresult.LmiCheckResult

method), 141
CheckResultMetaClass (class in

lmi.scripts.common.command.meta), 146
child_commands() (lmi.scripts.common.command.base.LmiBaseCommand

class method), 139
child_commands() (lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer

class method), 148
cim_namespace() (lmi.scripts.common.command.session.LmiSessionCommand

class method), 149
CIMError, 99
classes() (lmi.shell.LMINamespace.LMINamespace

method), 119
classname (lmi.shell.LMIClass.LMIClass attribute), 88
classname (lmi.shell.LMIInstance.LMIInstance at-

tribute), 112
classname (lmi.shell.LMIInstanceName.LMIInstanceName

attribute), 105
clear() (lmi.shell.LMIShellCache.LMIShellCache

method), 122
clear_cache() (lmi.shell.LMIConnection.LMIConnection

method), 92
clear_history() (lmi.shell.LMIConsole.LMIConsole

method), 95
client (lmi.shell.LMIConnection.LMIConnection at-

tribute), 92
close_luks() (in module lmi.scripts.storage.luks), 187
cmd_name (lmi.scripts.common.command.base.LmiBaseCommand

attribute), 139
cmd_name_parts (lmi.scripts.common.command.base.LmiBaseCommand

301

OpenLMI Documentation, Release latest

attribute), 139
cmp_profiles() (in module

lmi.scripts.common.versioncheck), 160
cmp_version() (in module

lmi.scripts.common.versioncheck.parser),
164

complete() (lmi.shell.LMICompleter.LMICompleter
method), 91

Configuration (class in
lmi.scripts.common.configuration), 152

connect() (in module lmi.shell.LMIConnection), 94
connect() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 81
connect() (lmi.shell.LMIConnection.LMIConnection

method), 92
connect() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 132
connection (lmi.shell.LMIBaseObject.LMIWrapperBaseObject

attribute), 80
ConnectionError, 99
copy() (lmi.shell.LMIInstance.LMIInstance method), 112
copy() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 105
cql() (lmi.shell.LMINamespace.LMINamespace

method), 119
create_fs() (in module lmi.scripts.storage.fs), 190
create_group() (in module lmi.scripts.account), 164
create_instance() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 81
create_instance() (lmi.shell.LMIClass.LMIClass

method), 88
create_instance() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 132
create_luks() (in module lmi.scripts.storage.luks), 187
create_lv() (in module lmi.scripts.storage.lvm), 188
create_partition() (in module

lmi.scripts.storage.partition), 185
create_partition_table() (in module

lmi.scripts.storage.partition), 185
create_raid() (in module lmi.scripts.storage.raid), 189
create_setting() (in module lmi.scripts.networking), 172
create_user() (in module lmi.scripts.account), 164
create_vg() (in module lmi.scripts.storage.lvm), 188
critical() (lmi.shell.LMIShellLogger.LMIShellLogger

method), 125
CsvFormatter (class in lmi.scripts.common.formatter),

154
cwd_first_in_path (lmi.shell.LMIShellOptions.LMIShellOptions

attribute), 126

D
deactivate() (in module lmi.scripts.networking), 172
debug() (lmi.shell.LMIShellLogger.LMIShellLogger

method), 125

debug_level() (in module lmi.scripts.sssd), 182
DEFAULT_FORMAT_STRING (in module

lmi.scripts.common.configuration), 153
DEFAULT_FORMATTER_OPTIONS (in module

lmi.scripts.common.command.base), 138
default_options() (lmi.scripts.common.configuration.Configuration

class method), 152
delete() (lmi.shell.LMIInstance.LMIInstance method),

112
delete() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 105
delete() (lmi.shell.LMISubscription.LMISubscription

method), 127
delete_format() (in module lmi.scripts.storage.fs), 190
delete_group() (in module lmi.scripts.account), 165
delete_instance() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 82
delete_instance() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 132
delete_luks_passphrase() (in module

lmi.scripts.storage.luks), 187
delete_lv() (in module lmi.scripts.storage.lvm), 188
delete_partition() (in module

lmi.scripts.storage.partition), 186
delete_raid() (in module lmi.scripts.storage.raid), 189
delete_setting() (in module lmi.scripts.networking), 172
delete_user() (in module lmi.scripts.account), 165
delete_vg() (in module lmi.scripts.storage.lvm), 188
dest_pos_args_count() (lmi.scripts.common.command.endpoint.LmiEndPointCommand

class method), 142
dest_pos_args_count() (lmi.scripts.common.command.session.LmiSessionCommand

class method), 150
device_show() (in module lmi.scripts.storage.show), 191
device_show_data() (in module lmi.scripts.storage.show),

191
device_show_device() (in module

lmi.scripts.storage.show), 191
disconnect() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 82
disconnect() (lmi.shell.LMIConnection.LMIConnection

method), 92
disconnect() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 132
doc() (lmi.shell.LMIClass.LMIClass method), 89
doc() (lmi.shell.LMIInstance.LMIInstance method), 112
doc() (lmi.shell.LMIMethod.LMIMethod method), 118
dummy() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 82
dummy() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 132

E
enable_service() (in module lmi.scripts.service), 177

302 Index

OpenLMI Documentation, Release latest

encoding (lmi.scripts.common.formatter.Formatter
attribute), 155

EndPointCommandMetaClass (class in
lmi.scripts.common.command.meta), 146

enslave() (in module lmi.scripts.networking), 172
enumerate() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 132
enumerate_iter() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 133
enumerate_iter_with_uri()

(lmi.shell.LMIWSMANClient.LMIWSMANClient
method), 133

environment variable
PAGER, 89, 112, 117, 118

error() (lmi.shell.LMIShellLogger.LMIShellLogger
method), 125

error() (lmi.shell.LMIShellOptions.LMIShellOptionParser
method), 126

ErrorFormatter (class in lmi.scripts.common.formatter),
154

escape_cql() (in module lmi.scripts.storage.common),
183

eval_expr() (lmi.scripts.common.command.select.LmiSelectCommand
method), 148

eval_respl() (in module
lmi.scripts.common.versioncheck), 160

evaluate() (lmi.scripts.common.versioncheck.parser.SemanticGroup
method), 163

exception() (lmi.shell.LMIShellLogger.LMIShellLogger
method), 125

exec_query() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient
method), 82

exec_query() (lmi.shell.LMIWSMANClient.LMIWSMANClient
method), 133

execute() (lmi.scripts.common.command.endpoint.LmiEndPointCommand
method), 142

execute_on_connection()
(lmi.scripts.common.command.session.LmiSessionCommand
method), 150

Expr (class in lmi.scripts.common.versioncheck.parser),
162

expr() (lmi.scripts.common.versioncheck.parser.TreeBuilder
method), 163

F
fallback_command() (lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer

class method), 148
fancy_format() (lmi.shell.LMIFormatter.LMIFormatter

method), 101
fetch() (lmi.shell.LMIClass.LMIClass method), 89
FILE_TYPES (in module lmi.scripts.software), 179
FilteredDict (class in lmi.scripts.common.util), 160
find_package() (in module lmi.scripts.software), 179

first_associator() (lmi.shell.LMIInstance.LMIInstance
method), 112

first_associator() (lmi.shell.LMIInstanceName.LMIInstanceName
method), 105

first_associator_name() (lmi.shell.LMIInstance.LMIInstance
method), 113

first_associator_name() (lmi.shell.LMIInstanceName.LMIInstanceName
method), 106

first_instance() (lmi.shell.LMIClass.LMIClass method),
89

first_instance_name() (lmi.shell.LMIClass.LMIClass
method), 89

first_reference() (lmi.shell.LMIInstance.LMIInstance
method), 113

first_reference() (lmi.shell.LMIInstanceName.LMIInstanceName
method), 107

first_reference_name() (lmi.shell.LMIInstance.LMIInstance
method), 114

first_reference_name() (lmi.shell.LMIInstanceName.LMIInstanceName
method), 107

format() (lmi.scripts.common.lmi_logging.LevelDispatchingFormatter
method), 158

format() (lmi.shell.LMIFormatter.LMIClassFormatter
method), 100

format() (lmi.shell.LMIFormatter.LMIFormatter
method), 101

format() (lmi.shell.LMIFormatter.LMIInstanceFormatter
method), 101

format() (lmi.shell.LMIFormatter.LMIMethodFormatter
method), 101

format() (lmi.shell.LMIFormatter.LMIMofFormatter
method), 102

format() (lmi.shell.LMIFormatter.LMITextFormatter
method), 102

format_memory_size() (in module lmi.scripts.hardware),
166

format_memory_size() (in module lmi.scripts.system),
192

format_method() (lmi.shell.LMIFormatter.LMIMethodFormatter
method), 102

format_options (lmi.scripts.common.command.base.LmiBaseCommand
attribute), 139

format_parameter() (lmi.shell.LMIFormatter.LMIMethodFormatter
method), 102

format_property() (lmi.shell.LMIFormatter.LMIClassFormatter
method), 100

format_property() (lmi.shell.LMIFormatter.LMIInstanceFormatter
method), 101

format_qualifier() (lmi.shell.LMIFormatter.LMIMethodFormatter
method), 102

format_show() (in module lmi.scripts.storage.show), 191
Formatter (class in lmi.scripts.common.formatter), 154
formatter (lmi.scripts.common.command.endpoint.LmiEndPointCommand

attribute), 142

Index 303

OpenLMI Documentation, Release latest

formatter_factory() (lmi.scripts.common.command.endpoint.LmiEndPointCommand
method), 142

FormatterCommand (class in
lmi.scripts.common.formatter.command),
157

fs_show() (in module lmi.scripts.storage.show), 192

G
get_active_settings() (in module lmi.scripts.networking),

172
get_all_info() (in module lmi.scripts.hardware), 166
get_all_instances() (in module lmi.scripts.hardware), 167
get_all_instances() (in module lmi.scripts.system), 192
get_applicable_devices() (in module

lmi.scripts.networking), 172
get_associator_names() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 82
get_associator_names() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 133
get_associators() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 83
get_associators() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 134
get_available_settings() (in module

lmi.scripts.networking), 172
get_children() (in module lmi.scripts.storage.common),

183
get_class() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 84
get_class() (lmi.shell.LMINamespace.LMINamespace

method), 120
get_class() (lmi.shell.LMIShellCache.LMIShellCache

method), 122
get_class() (lmi.shell.LMIShellClient.LMIShellClient

method), 123
get_class() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 135
get_class_names() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 84
get_class_names() (lmi.shell.LMIShellClient.LMIShellClient

method), 123
get_class_names() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 135
get_class_version() (in module

lmi.scripts.common.versioncheck), 161
get_classes() (lmi.shell.LMIShellCache.LMIShellCache

method), 122
get_cmd_name_parts() (lmi.scripts.common.command.base.LmiBaseCommand

method), 139
get_color_sequence() (in module

lmi.scripts.common.lmi_logging), 159
get_colored_string() (in module lmi.scripts.hardware),

167
get_colored_string() (in module lmi.scripts.system), 193

get_columns() (lmi.scripts.common.command.lister.LmiBaseListerCommand
class method), 145

get_computer_system() (in module lmi.scripts.common),
138

get_conditionals() (lmi.scripts.common.command.select.LmiSelectCommand
class method), 149

get_cpu_info() (in module lmi.scripts.hardware), 167
get_credentials() (lmi.scripts.common.session.Session

method), 159
get_default_gateways() (in module

lmi.scripts.networking), 172
get_description() (lmi.scripts.common.command.base.LmiBaseCommand

class method), 140
get_device_by_name() (in module

lmi.scripts.networking), 173
get_device_format_label() (in module

lmi.scripts.storage.fs), 190
get_devices() (in module lmi.scripts.storage.common),

183
get_directory_instance() (in module

lmi.scripts.logicalfile.logicalfile), 169
get_directory_name_properties() (in module

lmi.scripts.logicalfile.logicalfile), 169
get_disk_partition_table() (in module

lmi.scripts.storage.partition), 186
get_disk_partitions() (in module

lmi.scripts.storage.partition), 186
get_disks_info() (in module lmi.scripts.hardware), 167
get_dns_servers() (in module lmi.scripts.networking),

173
get_enabled_string() (in module lmi.scripts.service), 177
get_file_identification() (in module

lmi.scripts.logicalfile.logicalfile), 169
get_format_label() (in module lmi.scripts.storage.fs), 190
get_format_on_device() (in module

lmi.scripts.storage.fs), 190
get_formats() (in module lmi.scripts.storage.fs), 191
get_group() (in module lmi.scripts.account), 165
get_hostname() (in module lmi.scripts.hardware), 167
get_hostname() (in module lmi.scripts.system), 193
get_hwinfo() (in module lmi.scripts.system), 193
get_instance() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 85
get_instance() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 135
get_instance_names() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 85
get_instance_names() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 135
get_instances() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 86
get_instances() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 136
get_ip_addresses() (in module lmi.scripts.networking),

304 Index

OpenLMI Documentation, Release latest

173
get_ipv4_addresses() (in module lmi.scripts.networking),

173
get_ipv6_addresses() (in module lmi.scripts.networking),

173
get_largest_partition_size() (in module

lmi.scripts.storage.partition), 186
get_locale() (in module lmi.scripts.locale), 168
get_logger() (in module

lmi.scripts.common.lmi_logging), 159
get_luks_device() (in module lmi.scripts.storage.luks),

187
get_luks_list() (in module lmi.scripts.storage.luks), 187
get_lv_vg() (in module lmi.scripts.storage.lvm), 188
get_lvs() (in module lmi.scripts.storage.lvm), 188
get_mac() (in module lmi.scripts.networking), 173
get_memory_info() (in module lmi.scripts.hardware), 167
get_module_name() (in module

lmi.scripts.common.command.util), 152
get_motherboard_info() (in module

lmi.scripts.hardware), 167
get_namespace() (lmi.shell.LMIConnection.LMIConnection

method), 92
get_networkinfo() (in module lmi.scripts.system), 193
get_osinfo() (in module lmi.scripts.system), 193
get_package_nevra() (in module lmi.scripts.software),

179
get_parents() (in module lmi.scripts.storage.common),

184
get_partition_disk() (in module

lmi.scripts.storage.partition), 186
get_partition_tables() (in module

lmi.scripts.storage.partition), 186
get_partitions() (in module lmi.scripts.storage.partition),

186
get_passphrase_count() (in module

lmi.scripts.storage.luks), 187
get_profile_version() (in module

lmi.scripts.common.versioncheck), 161
get_raid_members() (in module lmi.scripts.storage.raid),

190
get_raids() (in module lmi.scripts.storage.raid), 190
get_reference_names() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 86
get_reference_names() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 136
get_references() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 87
get_references() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 137
get_repository() (in module lmi.scripts.software), 180
get_service() (in module lmi.scripts.service), 177
get_servicesinfo() (in module lmi.scripts.system), 193
get_setting_by_caption() (in module

lmi.scripts.networking), 173
get_setting_ip4_method() (in module

lmi.scripts.networking), 173
get_setting_ip6_method() (in module

lmi.scripts.networking), 174
get_setting_type() (in module lmi.scripts.networking),

174
get_single_instance() (in module lmi.scripts.hardware),

167
get_single_instance() (in module lmi.scripts.system), 193
get_static_routes() (in module lmi.scripts.networking),

174
get_status_string() (in module lmi.scripts.service), 177
get_sub_setting() (in module lmi.scripts.networking), 174
get_superclass() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 87
get_superclass() (lmi.shell.LMIShellCache.LMIShellCache

method), 122
get_superclass() (lmi.shell.LMIShellClient.LMIShellClient

method), 124
get_superclass() (lmi.shell.LMIWSMANClient.LMIWSMANClient

method), 137
get_system_info() (in module lmi.scripts.hardware), 167
get_system_info() (in module lmi.scripts.system), 193
get_terminal_width() (in module

lmi.scripts.common.formatter), 157
get_tp_vgs() (in module lmi.scripts.storage.lvm), 188
get_tps() (in module lmi.scripts.storage.lvm), 189
get_unconnected() (lmi.scripts.common.session.Session

method), 159
get_usage() (lmi.scripts.common.command.base.LmiBaseCommand

method), 140
get_usage() (lmi.scripts.common.command.select.LmiSelectCommand

method), 149
get_user() (in module lmi.scripts.account), 165
get_users_in_group() (in module lmi.scripts.account),

165
get_vg_lvs() (in module lmi.scripts.storage.lvm), 189
get_vg_pvs() (in module lmi.scripts.storage.lvm), 189
get_vg_tps() (in module lmi.scripts.storage.lvm), 189
get_vgs() (in module lmi.scripts.storage.lvm), 189
global_matches() (lmi.shell.LMICompleter.LMICompleter

method), 91

H
has_own_usage() (lmi.scripts.common.command.base.LmiBaseCommand

class method), 140
has_superclass() (lmi.shell.LMIShellCache.LMIShellCache

method), 122
history_file (lmi.scripts.common.configuration.Configuration

attribute), 152
history_file (lmi.shell.LMIShellConfig.LMIShellConfig

attribute), 124

Index 305

OpenLMI Documentation, Release latest

history_length (lmi.shell.LMIShellConfig.LMIShellConfig
attribute), 125

history_max_length (lmi.scripts.common.configuration.Configuration
attribute), 152

host_counter (lmi.scripts.common.formatter.Formatter at-
tribute), 155

hostname (lmi.shell.LMICIMXMLClient.LMICIMXMLClient
attribute), 87

hostname (lmi.shell.LMIConnection.LMIConnection at-
tribute), 92

hostname (lmi.shell.LMIInstanceName.LMIInstanceName
attribute), 107

hostname (lmi.shell.LMIWSMANClient.LMIWSMANClient
attribute), 137

hostnames (lmi.scripts.common.session.Session at-
tribute), 160

human_friendly (lmi.scripts.common.configuration.Configuration
attribute), 152

I
info() (lmi.shell.LMIShellLogger.LMIShellLogger

method), 125
install_from_uri() (in module lmi.scripts.software), 180
install_package() (in module lmi.scripts.software), 180
instance_names() (lmi.shell.LMIClass.LMIClass

method), 89
InstanceListerMetaClass (class in

lmi.scripts.common.command.meta), 146
instances() (lmi.shell.LMIClass.LMIClass method), 90
interact (lmi.shell.LMIShellOptions.LMIShellOptions at-

tribute), 126
interact() (lmi.shell.LMIConsole.LMIConsole method),

95
interactive (lmi.shell.LMIShellClient.LMIShellClient at-

tribute), 124
interactive (lmi.shell.LMIShellOptions.LMIShellOptions

attribute), 126
interpret() (lmi.shell.LMIConsole.LMIConsole method),

95
invoke_on_service() (in module lmi.scripts.service), 177
is_abstract_method() (in module

lmi.scripts.common.command.util), 152
is_deleted (lmi.shell.LMIInstance.LMIInstance attribute),

114
is_deleted (lmi.shell.LMIInstanceName.LMIInstanceName

attribute), 108
is_end_point() (lmi.scripts.common.command.base.LmiBaseCommand

class method), 140
is_fetched() (lmi.shell.LMIClass.LMIClass method), 90
is_in_group() (in module lmi.scripts.account), 166
is_multiplexer() (lmi.scripts.common.command.base.LmiBaseCommand

class method), 140
is_selector() (lmi.scripts.common.command.base.LmiBaseCommand

class method), 140

is_setting_active() (in module lmi.scripts.networking),
174

is_wsman() (lmi.shell.LMIConnection.LMIConnection
method), 92

J
join() (in module lmi.scripts.realmd), 176

K
key_file (lmi.shell.LMIShellConfig.LMIShellConfig at-

tribute), 125
key_properties() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 108
key_properties_dict() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 108
key_property_value() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 108

L
leave() (in module lmi.scripts.realmd), 176
LevelDispatchingFormatter (class in

lmi.scripts.common.lmi_logging), 158
lf_createdir() (in module

lmi.scripts.logicalfile.logicalfile), 169
lf_deletedir() (in module

lmi.scripts.logicalfile.logicalfile), 169
lf_list() (in module lmi.scripts.logicalfile.logicalfile), 169
lf_show() (in module lmi.scripts.logicalfile.logicalfile),

169
line_counter (lmi.scripts.common.formatter.Formatter at-

tribute), 155
list_available_packages() (in module

lmi.scripts.software), 180
list_devices() (in module lmi.scripts.networking), 174
list_groups() (in module lmi.scripts.account), 166
list_installed_packages() (in module

lmi.scripts.software), 181
list_messages() (in module lmi.scripts.journald), 168
list_package_files() (in module lmi.scripts.software), 181
list_power_states() (in module

lmi.scripts.powermanagement), 176
list_repositories() (in module lmi.scripts.software), 181
list_services() (in module lmi.scripts.service), 177
list_settings() (in module lmi.scripts.networking), 174
list_users() (in module lmi.scripts.account), 166
lister_format (lmi.scripts.common.configuration.Configuration

attribute), 153
ListerMetaClass (class in

lmi.scripts.common.command.meta), 146
ListFormatter (class in lmi.scripts.common.formatter),

155
lmi.scripts.account (module), 164
lmi.scripts.common (module), 138
lmi.scripts.common.command (module), 138

306 Index

OpenLMI Documentation, Release latest

lmi.scripts.common.command.base (module), 138
lmi.scripts.common.command.checkresult (module), 141
lmi.scripts.common.command.endpoint (module), 142
lmi.scripts.common.command.helper (module), 143
lmi.scripts.common.command.lister (module), 145
lmi.scripts.common.command.meta (module), 146
lmi.scripts.common.command.multiplexer (module), 147
lmi.scripts.common.command.select (module), 148
lmi.scripts.common.command.session (module), 149
lmi.scripts.common.command.show (module), 151
lmi.scripts.common.command.util (module), 151
lmi.scripts.common.configuration (module), 152
lmi.scripts.common.errors (module), 153
lmi.scripts.common.formatter (module), 154
lmi.scripts.common.formatter.command (module), 157
lmi.scripts.common.lmi_logging (module), 158
lmi.scripts.common.session (module), 159
lmi.scripts.common.util (module), 160
lmi.scripts.common.versioncheck (module), 160
lmi.scripts.common.versioncheck.parser (module), 161
lmi.scripts.hardware (module), 166
lmi.scripts.journald (module), 168
lmi.scripts.locale (module), 168
lmi.scripts.logicalfile.logicalfile (module), 169
lmi.scripts.networking (module), 170
lmi.scripts.powermanagement (module), 176
lmi.scripts.realmd (module), 176
lmi.scripts.service (module), 177
lmi.scripts.software (module), 178
lmi.scripts.sssd (module), 182
lmi.scripts.storage (module), 182
lmi.scripts.storage.common (module), 183
lmi.scripts.storage.fs (module), 190
lmi.scripts.storage.luks (module), 186
lmi.scripts.storage.lvm (module), 188
lmi.scripts.storage.partition (module), 185
lmi.scripts.storage.raid (module), 189
lmi.scripts.storage.show (module), 191
lmi.scripts.system (module), 192
lmi.shell.LMIBaseObject (module), 80
lmi.shell.LMICIMXMLClient (module), 81
lmi.shell.LMIClass (module), 88
lmi.shell.LMICompleter (module), 91
lmi.shell.LMIConnection (module), 91
lmi.shell.LMIConsole (module), 95
lmi.shell.LMIConstantValues (module), 96
lmi.shell.LMIDecorators (module), 96
lmi.shell.LMIExceptions (module), 99
lmi.shell.LMIFormatter (module), 100
lmi.shell.LMIHelper (module), 103
lmi.shell.LMIIndicationListener (module), 103
lmi.shell.LMIInstance (module), 110
lmi.shell.LMIInstanceName (module), 103
lmi.shell.LMIJob (module), 117

lmi.shell.LMIMethod (module), 118
lmi.shell.LMINamespace (module), 119
lmi.shell.LMIObjectFactory (module), 120
lmi.shell.LMIReturnValue (module), 121
lmi.shell.LMIShellCache (module), 121
lmi.shell.LMIShellClient (module), 122
lmi.shell.LMIShellConfig (module), 124
lmi.shell.LMIShellLogger (module), 125
lmi.shell.LMIShellOptions (module), 126
lmi.shell.LMIShellVersion (module), 127
lmi.shell.LMISubscription (module), 127
lmi.shell.LMIUtil (module), 128
lmi.shell.LMIWSMANClient (module), 131
lmi_associators() (in module lmi.shell.LMIUtil), 128
lmi_cast_to_cim() (in module lmi.shell.LMIUtil), 128
lmi_cast_to_lmi() (in module lmi.shell.LMIUtil), 128
lmi_class_fetch_lazy (class in lmi.shell.LMIDecorators),

96
lmi_get_logger() (in module lmi.shell.LMIShellLogger),

126
lmi_get_use_exceptions() (in module lmi.shell.LMIUtil),

128
lmi_init_logger() (in module lmi.shell.LMIShellLogger),

126
lmi_instance_name_fetch_lazy (class in

lmi.shell.LMIDecorators), 96
lmi_instance_to_path() (in module lmi.shell.LMIUtil),

129
lmi_is_job_completed() (in module lmi.shell.LMIJob),

117
lmi_is_job_exception() (in module lmi.shell.LMIJob),

117
lmi_is_job_finished() (in module lmi.shell.LMIJob), 117
lmi_is_job_killed() (in module lmi.shell.LMIJob), 117
lmi_is_job_terminated() (in module lmi.shell.LMIJob),

118
lmi_is_localhost() (in module lmi.shell.LMIUtil), 129
lmi_isinstance() (in module lmi.shell.LMIUtil), 129
lmi_parse_uri() (in module lmi.shell.LMIUtil), 129
lmi_possibly_deleted (class in lmi.shell.LMIDecorators),

97
lmi_process_cim_exceptions (class in

lmi.shell.LMIDecorators), 97
lmi_process_cim_exceptions_rval (class in

lmi.shell.LMIDecorators), 97
lmi_process_wsman_exceptions (class in

lmi.shell.LMIDecorators), 97
lmi_process_wsman_exceptions_rval (class in

lmi.shell.LMIDecorators), 98
lmi_raise_or_dump_exception() (in module

lmi.shell.LMIUtil), 129
lmi_return_expr_if_fail (class in

lmi.shell.LMIDecorators), 98
lmi_return_if_fail (class in lmi.shell.LMIDecorators), 98

Index 307

OpenLMI Documentation, Release latest

lmi_return_val_if_fail (class in
lmi.shell.LMIDecorators), 99

lmi_set_use_exceptions() (in module lmi.shell.LMIUtil),
129

lmi_setup_logger() (in module
lmi.shell.LMIShellLogger), 126

lmi_transform_to_cim_param() (in module
lmi.shell.LMIUtil), 129

lmi_transform_to_lmi() (in module lmi.shell.LMIUtil),
129

lmi_wrap_cim_class() (in module lmi.shell.LMIUtil),
130

lmi_wrap_cim_instance() (in module lmi.shell.LMIUtil),
130

lmi_wrap_cim_instance_name() (in module
lmi.shell.LMIUtil), 130

lmi_wrap_cim_method() (in module lmi.shell.LMIUtil),
130

lmi_wrap_cim_namespace() (in module
lmi.shell.LMIUtil), 130

LmiBadSelectExpression, 153
LmiBaseCommand (class in

lmi.scripts.common.command.base), 138
LmiBaseListerCommand (class in

lmi.scripts.common.command.lister), 145
LmiCheckResult (class in

lmi.scripts.common.command.checkresult),
141

LMICIMXMLClient (class in
lmi.shell.LMICIMXMLClient), 81

LMIClass (class in lmi.shell.LMIClass), 88
LMIClassCacheEntry (class in

lmi.shell.LMIShellCache), 121
LMIClassFormatter (class in lmi.shell.LMIFormatter),

100
LMIClassNotFound, 99
LmiCommandError, 153
LmiCommandImportError, 153
LmiCommandInvalidCallable, 153
LmiCommandInvalidName, 153
LmiCommandInvalidProperty, 153
LmiCommandMissingCallable, 154
LmiCommandMultiplexer (class in

lmi.scripts.common.command.multiplexer),
147

LmiCommandNotFound, 154
LMICompleter (class in lmi.shell.LMICompleter), 91
LMIConnection (class in lmi.shell.LMIConnection), 91
LMIConsole (class in lmi.shell.LMIConsole), 95
LMIConstantValues (class in

lmi.shell.LMIConstantValues), 96
LMIConstantValuesMethodReturnType (class in

lmi.shell.LMIConstantValues), 96
LMIConstantValuesParamProp (class in

lmi.shell.LMIConstantValues), 96
LMIDeletedObjectError, 99
LmiEndPointCommand (class in

lmi.scripts.common.command.endpoint),
142

LmiError, 154
LmiFailed, 154
LMIFilterError, 100
LMIFormatter (class in lmi.shell.LMIFormatter), 101
LMIHandlerNamePatternError, 100
LMIHelper (class in lmi.shell.LMIHelper), 103
LmiImportCallableFailed, 154
LMIIndicationError, 100
LMIIndicationListener (class in

lmi.shell.LMIIndicationListener), 103
LMIIndicationListenerError, 100
LMIInstance (class in lmi.shell.LMIInstance), 110
LMIInstanceFormatter (class in lmi.shell.LMIFormatter),

101
LmiInstanceLister (class in

lmi.scripts.common.command.lister), 145
LMIInstanceName (class in

lmi.shell.LMIInstanceName), 103
LmiInvalidOptions, 154
LmiLister (class in lmi.scripts.common.command.lister),

145
LMIMethod (class in lmi.shell.LMIMethod), 118
LMIMethodCallError, 100
LMIMethodFormatter (class in lmi.shell.LMIFormatter),

101
LMIMethodSignalHelper (class in

lmi.shell.LMIMethod), 118
LMIMofFormatter (class in lmi.shell.LMIFormatter), 102
LMINamespace (class in lmi.shell.LMINamespace), 119
LMINamespaceNotFound, 100
LMINamespaceRoot (class in lmi.shell.LMINamespace),

120
LmiNoConnections, 154
LMINoPagerError, 100
LMINotSupported, 100
LMIObjectFactory (class in

lmi.shell.LMIObjectFactory), 120
LMIPassByRef (class in lmi.shell.LMIUtil), 128
LmiResultFailed, 142
LMIReturnValue (class in lmi.shell.LMIReturnValue),

121
LmiSelectCommand (class in

lmi.scripts.common.command.select), 148
LmiSessionCommand (class in

lmi.scripts.common.command.session), 149
LMIShellCache (class in lmi.shell.LMIShellCache), 121
LMIShellClient (class in lmi.shell.LMIShellClient), 122
LMIShellConfig (class in lmi.shell.LMIShellConfig), 124

308 Index

OpenLMI Documentation, Release latest

LMIShellLogger (class in lmi.shell.LMIShellLogger),
125

LMIShellOptionParser (class in
lmi.shell.LMIShellOptions), 126

LMIShellOptions (class in lmi.shell.LMIShellOptions),
126

LMIShellOptionsHelpWithVersionFormatter (class in
lmi.shell.LMIShellOptions), 127

LmiShowInstance (class in
lmi.scripts.common.command.show), 151

LMISignalHelperBase (class in lmi.shell.LMIMethod),
119

LMISubscription (class in lmi.shell.LMISubscription),
127

LMISynchroMethodCallError, 100
LMISynchroMethodCallFilterError, 100
LmiTerminate, 154
LMITextFormatter (class in lmi.shell.LMIFormatter), 102
LmiUnexpectedResult, 154
LMIUnknownParameterError, 100
LMIUnknownPropertyError, 100
LmiUnsatisfiedDependencies, 154
LMIUseExceptionsHelper (class in lmi.shell.LMIUtil),

128
LMIWrapperBaseObject (class in

lmi.shell.LMIBaseObject), 80
LMIWSMANClient (class in

lmi.shell.LMIWSMANClient), 131
load() (lmi.scripts.common.configuration.Configuration

method), 153
load_history() (lmi.shell.LMIConsole.LMIConsole

method), 95
log (lmi.shell.LMIShellOptions.LMIShellOptions at-

tribute), 126
log_file (lmi.scripts.common.configuration.Configuration

attribute), 153
LOG_LEVEL_2_COLOR (in module

lmi.scripts.common.lmi_logging), 158
log_message() (in module lmi.scripts.journald), 168
LogRecord (class in lmi.scripts.common.lmi_logging),

158
lv_show() (in module lmi.scripts.storage.show), 192

M
make_list_command() (in module

lmi.scripts.common.command.helper), 143
methods() (lmi.shell.LMIClass.LMIClass method), 90
methods() (lmi.shell.LMIInstance.LMIInstance method),

114
methods() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 108
modify_instance() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient

method), 87

modify_instance() (lmi.shell.LMIWSMANClient.LMIWSMANClient
method), 137

modify_vg() (in module lmi.scripts.storage.lvm), 189
MultiplexerMetaClass (class in

lmi.scripts.common.command.meta), 146

N
name (lmi.shell.LMINamespace.LMINamespace at-

tribute), 120
namespace (lmi.shell.LMIClass.LMIClass attribute), 90
namespace (lmi.shell.LMIInstance.LMIInstance at-

tribute), 114
namespace (lmi.shell.LMIInstanceName.LMIInstanceName

attribute), 108
namespaces (lmi.shell.LMIConnection.LMIConnection

attribute), 93
namespaces (lmi.shell.LMINamespace.LMINamespaceRoot

attribute), 120
new_instance_name() (lmi.shell.LMIClass.LMIClass

method), 90
NewHostCommand (class in

lmi.scripts.common.formatter.command),
157

NewTableCommand (class in
lmi.scripts.common.formatter.command),
158

NewTableHeaderCommand (class in
lmi.scripts.common.formatter.command),
158

no_headings (lmi.scripts.common.configuration.Configuration
attribute), 153

O
OP_MAP (in module lmi.scripts.common.versioncheck.parser),

162
open_luks() (in module lmi.scripts.storage.luks), 187
opt_name_sanitize() (in module

lmi.scripts.common.command.endpoint),
143

options_dict2kwargs() (in module
lmi.scripts.common.command.endpoint),
143

Or (class in lmi.scripts.common.versioncheck.parser),
162

P
PAGER, 89, 112, 117, 118
parameters() (lmi.shell.LMIMethod.LMIMethod

method), 118
parent (lmi.scripts.common.command.base.LmiBaseCommand

attribute), 140
partition_show() (in module lmi.scripts.storage.show),

192

Index 309

OpenLMI Documentation, Release latest

partition_table_show() (in module
lmi.scripts.storage.show), 192

path (lmi.shell.LMIInstance.LMIInstance attribute), 115
pkg_spec_to_filter() (in module lmi.scripts.software), 181
POWER_STATE_HIBERNATE (in module

lmi.scripts.powermanagement), 176
POWER_STATE_POWEROFF (in module

lmi.scripts.powermanagement), 176
POWER_STATE_POWEROFF_FORCE (in module

lmi.scripts.powermanagement), 176
POWER_STATE_REBOOT (in module

lmi.scripts.powermanagement), 176
POWER_STATE_REBOOT_FORCE (in module

lmi.scripts.powermanagement), 176
POWER_STATE_SUSPEND (in module

lmi.scripts.powermanagement), 176
print_classes() (lmi.shell.LMINamespace.LMINamespace

method), 120
print_header() (lmi.scripts.common.formatter.ListFormatter

method), 156
print_host() (lmi.scripts.common.formatter.Formatter

method), 155
print_host() (lmi.scripts.common.formatter.TableFormatter

method), 157
print_key_properties() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 108
print_line() (lmi.scripts.common.formatter.Formatter

method), 155
print_methods() (lmi.shell.LMIClass.LMIClass method),

90
print_methods() (lmi.shell.LMIInstance.LMIInstance

method), 115
print_methods() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 109
print_namespaces() (lmi.shell.LMIConnection.LMIConnection

method), 93
print_namespaces() (lmi.shell.LMINamespace.LMINamespaceRoot

method), 120
print_parameters() (lmi.shell.LMIMethod.LMIMethod

method), 118
print_properties() (lmi.shell.LMIClass.LMIClass

method), 90
print_properties() (lmi.shell.LMIInstance.LMIInstance

method), 115
print_row() (lmi.scripts.common.formatter.ListFormatter

method), 156
print_row() (lmi.scripts.common.formatter.TableFormatter

method), 157
print_subscribed_indications()

(lmi.shell.LMIConnection.LMIConnection
method), 93

print_table_title() (lmi.scripts.common.formatter.ListFormatter
method), 156

print_table_title() (lmi.scripts.common.formatter.TableFormatter

method), 157
print_text_row() (lmi.scripts.common.formatter.ListFormatter

method), 156
print_valuemap_parameters()

(lmi.shell.LMIMethod.LMIMethod method),
118

print_valuemap_properties()
(lmi.shell.LMIClass.LMIClass method),
90

print_values() (lmi.shell.LMIConstantValues.LMIConstantValues
method), 96

process_host_result() (lmi.scripts.common.command.session.LmiSessionCommand
method), 150

process_session() (lmi.scripts.common.command.session.LmiSessionCommand
method), 150

process_session_results()
(lmi.scripts.common.command.session.LmiSessionCommand
method), 150

processQueue() (lmi.shell.LMIShellLogger.LMIShellLogger
method), 125

produce_output() (lmi.scripts.common.command.endpoint.LmiEndPointCommand
method), 142

produce_output() (lmi.scripts.common.formatter.Formatter
method), 155

produce_output() (lmi.scripts.common.formatter.ListFormatter
method), 156

produce_output() (lmi.scripts.common.formatter.SingleFormatter
method), 156

produce_output() (lmi.scripts.common.formatter.TableFormatter
method), 157

properties() (lmi.shell.LMIClass.LMIClass method), 91
properties() (lmi.shell.LMIInstance.LMIInstance

method), 115
properties_dict() (lmi.shell.LMIInstance.LMIInstance

method), 115
property_value() (lmi.shell.LMIInstance.LMIInstance

method), 115
push() (lmi.shell.LMIInstance.LMIInstance method), 116
push_class() (lmi.scripts.common.versioncheck.parser.TreeBuilder

method), 163
push_literal() (lmi.scripts.common.versioncheck.parser.TreeBuilder

method), 163
push_profile() (lmi.scripts.common.versioncheck.parser.TreeBuilder

method), 163

R
raid_show() (in module lmi.scripts.storage.show), 192
RE_COMMAND_NAME (in module

lmi.scripts.common.command.util), 151
RE_ENVRA (in module lmi.scripts.software), 179
RE_NA (in module lmi.scripts.software), 179
RE_NEVRA (in module lmi.scripts.software), 179
RE_OPT_BRACKET_ARGUMENT (in module

lmi.scripts.common.command.util), 151

310 Index

OpenLMI Documentation, Release latest

RE_OPT_LONG_OPTION (in module
lmi.scripts.common.command.util), 151

RE_OPT_SHORT_OPTION (in module
lmi.scripts.common.command.util), 151

RE_OPT_UPPER_ARGUMENT (in module
lmi.scripts.common.command.util), 152

reference_names() (lmi.shell.LMIInstance.LMIInstance
method), 116

reference_names() (lmi.shell.LMIInstanceName.LMIInstanceName
method), 109

references() (lmi.shell.LMIInstance.LMIInstance
method), 116

references() (lmi.shell.LMIInstanceName.LMIInstanceName
method), 109

refresh() (lmi.shell.LMIInstance.LMIInstance method),
117

register() (lmi.shell.LMIObjectFactory.LMIObjectFactory
method), 121

register_subcommands() (in module
lmi.scripts.common.command.helper), 144

reload_service() (in module lmi.scripts.service), 178
remove_dns_server() (in module lmi.scripts.networking),

175
remove_from_group() (in module lmi.scripts.account),

166
remove_ip_address() (in module lmi.scripts.networking),

175
remove_package() (in module lmi.scripts.software), 181
remove_static_route() (in module

lmi.scripts.networking), 175
render() (lmi.scripts.common.command.lister.LmiInstanceLister

class method), 145
render() (lmi.scripts.common.command.show.LmiShowInstance

class method), 151
render_failed_flags() (in module lmi.scripts.software),

181
render_value() (lmi.scripts.common.formatter.Formatter

method), 155
replace_dns_server() (in module lmi.scripts.networking),

175
replace_ip_address() (in module lmi.scripts.networking),

175
replace_static_route() (in module lmi.scripts.networking),

175
Req (class in lmi.scripts.common.versioncheck.parser),

162
ReqCond (class in lmi.scripts.common.versioncheck.parser),

162
restart_service() (in module lmi.scripts.service), 178
return_type (lmi.shell.LMIMethod.LMIMethod at-

tribute), 118
root (lmi.shell.LMIConnection.LMIConnection at-

tribute), 93
run() (lmi.scripts.common.command.base.LmiBaseCommand

method), 140
run() (lmi.scripts.common.command.endpoint.LmiEndPointCommand

method), 142
run() (lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer

method), 148
run() (lmi.scripts.common.command.select.LmiSelectCommand

method), 149
run_subcommand() (lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer

method), 148
run_with_args() (lmi.scripts.common.command.endpoint.LmiEndPointCommand

method), 143

S
save_history() (lmi.shell.LMIConsole.LMIConsole

method), 95
script_argv (lmi.shell.LMIShellOptions.LMIShellOptions

attribute), 127
script_name (lmi.shell.LMIShellOptions.LMIShellOptions

attribute), 127
select_cmds() (lmi.scripts.common.command.select.LmiSelectCommand

method), 149
select_command() (in module

lmi.scripts.common.command.helper), 144
SelectMetaClass (class in

lmi.scripts.common.command.meta), 147
SemanticGroup (class in

lmi.scripts.common.versioncheck.parser),
163

Session (class in lmi.scripts.common.session), 159
session (lmi.scripts.common.command.base.LmiBaseCommand

attribute), 141
SessionCommandMetaClass (class in

lmi.scripts.common.command.meta), 147
SessionProxy (class in lmi.scripts.common.session), 160
set_classes() (lmi.shell.LMIShellCache.LMIShellCache

method), 122
set_locale() (in module lmi.scripts.locale), 168
set_repository_enabled() (in module

lmi.scripts.software), 181
set_session_proxy() (lmi.scripts.common.command.base.LmiBaseCommand

method), 141
set_vc_keyboard() (in module lmi.scripts.locale), 168
set_verify_server_certificate()

(lmi.shell.LMIConsole.LMIConsole method),
95

set_x11_keymap() (in module lmi.scripts.locale), 168
setLevel() (lmi.shell.LMIShellLogger.LMIShellLogger

method), 125
SETTING_IP_METHOD_DHCP (in module

lmi.scripts.networking), 170
SETTING_IP_METHOD_DHCPv6 (in module

lmi.scripts.networking), 170
SETTING_IP_METHOD_DISABLED (in module

lmi.scripts.networking), 170

Index 311

OpenLMI Documentation, Release latest

SETTING_IP_METHOD_STATELESS (in module
lmi.scripts.networking), 170

SETTING_IP_METHOD_STATIC (in module
lmi.scripts.networking), 170

SETTING_TYPE_BOND_MASTER (in module
lmi.scripts.networking), 171

SETTING_TYPE_BOND_SLAVE (in module
lmi.scripts.networking), 171

SETTING_TYPE_BRIDGE_MASTER (in module
lmi.scripts.networking), 171

SETTING_TYPE_BRIDGE_SLAVE (in module
lmi.scripts.networking), 171

SETTING_TYPE_ETHERNET (in module
lmi.scripts.networking), 171

SETTING_TYPE_UNKNOWN (in module
lmi.scripts.networking), 171

setup_completer() (lmi.shell.LMIConsole.LMIConsole
method), 95

setup_logger() (in module
lmi.scripts.common.lmi_logging), 159

ShellFormatter (class in lmi.scripts.common.formatter),
156

show() (in module lmi.scripts.realmd), 177
ShowInstanceMetaClass (class in

lmi.scripts.common.command.meta), 147
signal() (lmi.shell.LMIMethod.LMISignalHelperBase

static method), 119
signal_attach() (lmi.shell.LMIMethod.LMIMethodSignalHelper

method), 119
signal_core() (lmi.shell.LMIMethod.LMISignalHelperBase

static method), 119
signal_detach() (lmi.shell.LMIMethod.LMIMethodSignalHelper

method), 119
signal_handled() (lmi.shell.LMIMethod.LMIMethodSignalHelper

method), 119
signal_handler() (lmi.shell.LMIMethod.LMIMethodSignalHelper

method), 119
silent (lmi.scripts.common.configuration.Configuration

attribute), 153
SingleFormatter (class in lmi.scripts.common.formatter),

156
size2str() (in module lmi.scripts.storage.common), 184
start_service() (in module lmi.scripts.service), 178
stop_service() (in module lmi.scripts.service), 178
str2device() (in module lmi.scripts.storage.common), 184
str2format() (in module lmi.scripts.storage.fs), 191
str2obj() (in module lmi.scripts.storage.common), 184
str2size() (in module lmi.scripts.storage.common), 184
str2vg() (in module lmi.scripts.storage.common), 185
Subexpr (class in lmi.scripts.common.versioncheck.parser),

163
subexpr() (lmi.scripts.common.versioncheck.parser.TreeBuilder

method), 163
subscribe_indication() (lmi.shell.LMIConnection.LMIConnection

method), 93
subscribed_indications() (lmi.shell.LMIConnection.LMIConnection

method), 94
switch_power_state() (in module

lmi.scripts.powermanagement), 176

T
table_counter (lmi.scripts.common.formatter.Formatter

attribute), 155
TableFormatter (class in lmi.scripts.common.formatter),

157
take_action() (lmi.scripts.common.command.checkresult.LmiCheckResult

method), 141
take_action() (lmi.scripts.common.command.lister.LmiInstanceLister

method), 145
take_action() (lmi.scripts.common.command.lister.LmiLister

method), 146
take_action() (lmi.scripts.common.command.session.LmiSessionCommand

method), 150
take_action() (lmi.scripts.common.command.show.LmiShowInstance

method), 151
Term (class in lmi.scripts.common.versioncheck.parser),

163
term() (lmi.scripts.common.versioncheck.parser.TreeBuilder

method), 163
timeout (lmi.shell.LMIConnection.LMIConnection at-

tribute), 94
tlv_show() (in module lmi.scripts.storage.show), 192
to_instance() (lmi.shell.LMIInstanceName.LMIInstanceName

method), 110
tomof() (lmi.shell.LMIInstance.LMIInstance method),

117
tomof() (lmi.shell.LMIMethod.LMIMethod method), 118
trace (lmi.scripts.common.configuration.Configuration

attribute), 153
transform_options() (lmi.scripts.common.command.endpoint.LmiEndPointCommand

method), 143
TreeBuilder (class in lmi.scripts.common.versioncheck.parser),

163

U
unsubscribe_all_indications()

(lmi.shell.LMIConnection.LMIConnection
method), 94

unsubscribe_indication() (lmi.shell.LMIConnection.LMIConnection
method), 94

uri (lmi.shell.LMICIMXMLClient.LMICIMXMLClient
attribute), 88

uri (lmi.shell.LMIConnection.LMIConnection attribute),
94

uri (lmi.shell.LMIWSMANClient.LMIWSMANClient
attribute), 137

use_cache (lmi.shell.LMIShellClient.LMIShellClient at-
tribute), 124

312 Index

OpenLMI Documentation, Release latest

use_cache (lmi.shell.LMIShellConfig.LMIShellConfig
attribute), 125

use_cache() (lmi.shell.LMIConnection.LMIConnection
method), 94

use_exceptions (lmi.shell.LMIShellConfig.LMIShellConfig
attribute), 125

use_exceptions (lmi.shell.LMIUtil.LMIUseExceptionsHelper
attribute), 128

username (lmi.shell.LMICIMXMLClient.LMICIMXMLClient
attribute), 88

username (lmi.shell.LMIWSMANClient.LMIWSMANClient
attribute), 138

V
value (lmi.shell.LMIUtil.LMIPassByRef attribute), 128
value() (lmi.shell.LMIConstantValues.LMIConstantValues

method), 96
value_name() (lmi.shell.LMIConstantValues.LMIConstantValues

method), 96
valuemap_parameters() (lmi.shell.LMIMethod.LMIMethod

method), 118
valuemap_properties() (lmi.shell.LMIClass.LMIClass

method), 91
values() (lmi.shell.LMIConstantValues.LMIConstantValues

method), 96
values_dict() (lmi.shell.LMIConstantValues.LMIConstantValues

method), 96
verbose (lmi.scripts.common.configuration.Configuration

attribute), 153
verbosity (lmi.scripts.common.configuration.Configuration

attribute), 153
verify_options() (lmi.scripts.common.command.endpoint.LmiEndPointCommand

method), 143
verify_package() (in module lmi.scripts.software), 182
verify_server_cert (lmi.scripts.common.configuration.Configuration

attribute), 153
verify_server_cert (lmi.shell.LMIShellOptions.LMIShellOptions

attribute), 127
vg_show() (in module lmi.scripts.storage.show), 192

W
walk_cim_directory() (in module

lmi.scripts.logicalfile.logicalfile), 169
warning() (lmi.shell.LMIShellLogger.LMIShellLogger

method), 126
watch() (in module lmi.scripts.journald), 168
wql() (lmi.shell.LMINamespace.LMINamespace

method), 120
wrapped_object (lmi.shell.LMIClass.LMIClass attribute),

91
wrapped_object (lmi.shell.LMIInstance.LMIInstance at-

tribute), 117
wrapped_object (lmi.shell.LMIInstanceName.LMIInstanceName

attribute), 110

wrapped_object (lmi.shell.LMIMethod.LMIMethod at-
tribute), 118

Index 313

	Client components
	LMI metacommand
	LMIShell

	Server components
	Table of Contents
	OpenLMI client components
	OpenLMI server components

	Python Module Index

